def test(self): expected = util.matrix_to_dataframe( [['2019-11-27', 13.88, 0.0005159071471232402], ['2019-11-28', 13.63, 0.000507181628455422]]) input_example = util.matrix_to_dataframe([['2019-11-27', 13.88], ['2019-11-28', 13.63]]) result = logic.calculate_cdi_rate_for_time_series(input_example) pd.testing.assert_frame_equal(expected, result)
def setUp(self): if os.path.exists(processed_cdi_prices): os.remove(processed_cdi_prices) expected = [ ['2019-11-27', 5, 0.0001936305065440], ['2019-11-28', 4, 0.0001556498627913], ['2019-11-29', 3, 0.0001173037138344], ['2019-12-02', 2, 0.0000785849419846], ['2019-12-03', 1, 0.0000394862194537] ] self.expected = util.matrix_to_dataframe(expected)
def test_for_valid_file(self): expected = util.matrix_to_dataframe([ ['2019-11-27', 5], ['2019-11-28', 4], ['2019-11-29', 3], ['2019-12-02', 2], ['2019-12-03', 1] ]) result = data.load_raw_cdi_prices(raw_cdi_prices) pd.testing.assert_frame_equal(expected, result)
def test_for_last_days(self): expected = util.matrix_to_dataframe([ ['2020-12-09', 9, 90], ]) start = util.str_to_datetime('2020-12-09') end = util.str_to_datetime('2020-12-10') result = logic.filter_by_date_interval(self.input_example, start, end) result = result.reset_index(drop=True) pd.testing.assert_frame_equal(expected, result)
def setUp(self): input_example = [ ['2020-12-01', 13.88, 0.00051591], ['2020-12-02', 13.88, 0.00051591], ['2020-12-03', 13.88, 0.00051591], ['2020-12-04', 13.88, 0.00051591], ['2020-12-05', 13.88, 0.00051591], ['2020-12-06', 13.88, 0.00051591], ['2020-12-07', 13.88, 0.00051591], ['2020-12-08', 13.88, 0.00051591], ['2020-12-09', 13.88, 0.00051591], ] self.input_example = util.matrix_to_dataframe(input_example)
def setUp(self): input_example = [ ['2020-12-01', 1, 10], ['2020-12-02', 2, 20], ['2020-12-03', 3, 30], ['2020-12-04', 4, 40], ['2020-12-05', 5, 50], ['2020-12-06', 6, 60], ['2020-12-07', 7, 70], ['2020-12-08', 8, 80], ['2020-12-09', 9, 90], ] self.input_example = util.matrix_to_dataframe(input_example)
def test_save_and_load_file(self): expected = util.matrix_to_dataframe([ ['2019-11-27', 5, 0.0001936305065440], ['2019-11-28', 4, 0.0001556498627913], ['2019-11-29', 3, 0.0001173037138344], ['2019-12-02', 2, 0.0000785849419846], ['2019-12-03', 1, 0.0000394862194537] ]) data.save_processed_cdi_prices_file(expected, processed_cdi_prices) result = data.load_processed_cdi_prices_file(processed_cdi_prices) pd.testing.assert_frame_equal(expected, result)
def test_for_valid_interval(self): expected = util.matrix_to_dataframe([ ['2020-12-04', 4, 40], ['2020-12-05', 5, 50], ['2020-12-06', 6, 60], ]) start = util.str_to_datetime('2020-12-04') end = util.str_to_datetime('2020-12-07') result = logic.filter_by_date_interval(self.input_example, start, end) result = result.reset_index(drop=True) pd.testing.assert_frame_equal(expected, result)
def test_if_accumulated_values_are_correct(self): expected = util.matrix_to_dataframe([ ['2020-12-01', 1.0005339668500000], ['2020-12-02', 1.0010682188206000], ['2020-12-03', 1.0016027560640400], ['2020-12-04', 1.0021375787326500], ['2020-12-05', 1.0026726869788300], ['2020-12-06', 1.0032080809550800], ['2020-12-07', 1.0037437608139600], ['2020-12-08', 1.0042797267081300], ['2020-12-09', 1.0048159787903200], ], ['date', 'accumulated']) cdb = 103.5 result = logic.calculate_accumulated_cdi_rate(self.input_example, cdb) pd.testing.assert_frame_equal(expected, result)