def test_backward3_5(self): layer = ConvLayer(5, 3, 3) x = fake_data((2, 5, 3, 3)) layer.W = fake_data(layer.W.shape) layer.b = fake_data(layer.b.shape) y = layer.forward(x) x_grad = layer.backward(np.ones_like(y)) # do numerical gradients nm_x_grad = numerical_gradient(layer, x, x) nm_w_grad = numerical_gradient(layer, x, layer.W) nm_b_grad = numerical_gradient(layer, x, layer.b) self.assertTrue(np.allclose(nm_x_grad, x_grad)) self.assertTrue(np.allclose(nm_w_grad, layer.W_grad)) self.assertTrue(np.allclose(nm_b_grad, layer.b_grad))
def test_backward3(self): self.x = fake_data((2, 3, 5, 5)) nm_x_grad = numerical_gradient(self.layer, self.x, self.x) self.layer.forward(self.x) y = np.ones((2, 3, 2, 2)) x_grad = self.layer.backward(y) self.assertTrue(np.allclose(nm_x_grad, x_grad))
def test_backward4(self): h = 5 layer = ConvLayer(2, 5, h) x = fake_data((2, 2, 8, 8)) layer.W = fake_data((5, 2, h, h)) layer.b = fake_data(layer.b.shape) y = layer.forward(x) x_grad = layer.backward(np.ones_like(y)) nm_x_grad = numerical_gradient(layer, x, x) nm_w_grad = numerical_gradient(layer, x, layer.W) nm_b_grad = numerical_gradient(layer, x, layer.b) self.assertTrue(np.allclose(nm_x_grad, x_grad)) self.assertTrue(np.allclose(nm_w_grad, layer.W_grad)) self.assertTrue(np.allclose(nm_b_grad, layer.b_grad))
def test_backward4(self): x = np.array([[[[0, 0, 0, 0], [0, 0, 1, 1], [2, 0, 0, 3], [2, 0, 3, 0]]]]).astype('float64') nm_x_grad = numerical_gradient(self.layer, x, x) out = self.layer.forward(x) y = np.ones((1, 1, 2, 2)) x_grad = self.layer.backward(y) self.assertTrue(np.allclose(nm_x_grad, x_grad))
def test_backward2(self): nm_x_grad = numerical_gradient(self.layer, self.x, self.x) self.layer.forward(self.x) y = np.ones((1, 3, 2, 2)) x_grad = self.layer.backward(y) print("x", x_grad) print("expected", nm_x_grad) self.assertTrue(np.allclose(nm_x_grad, x_grad))
def test_backward1(self): layer = ConvLayer(1, 1, 3) x = fake_data((1, 1, 8, 8)) layer.W = fake_data((1, 1, 3, 3)) layer.b = fake_data(layer.b.shape) y = layer.forward(x) x_grad = layer.backward(np.ones_like(y)) # do numerical gradients nm_x_grad = numerical_gradient(layer, x, x) nm_w_grad = numerical_gradient(layer, x, layer.W) nm_b_grad = numerical_gradient(layer, x, layer.b) # note that this does not check the gradients of the padded elements self.assertTrue(np.allclose(nm_x_grad, x_grad)) self.assertTrue(np.allclose(nm_w_grad, layer.W_grad)) self.assertTrue(np.allclose(nm_b_grad, layer.b_grad))
def test_backward5(self): h = 5 layer = ConvLayer(2, 5, h) x = fake_data((2, 2, 8, 8)) layer.W = fake_data((5, 2, h, h)) layer.b = fake_data(layer.b.shape) y = layer.forward(x) y_grad = fake_data(y.shape) x_grad = layer.backward(y_grad) nm_x_grad = numerical_gradient(layer, x, x, y_grad) nm_w_grad = numerical_gradient(layer, x, layer.W, y_grad) nm_b_grad = numerical_gradient(layer, x, layer.b, y_grad) self.assertTrue(np.allclose(nm_x_grad, x_grad)) #print("expected",nm_x_grad) #print(x_grad) self.assertTrue(np.allclose(nm_w_grad, layer.W_grad)) #print("expected2",nm_w_grad) #print(layer.W_grad) self.assertTrue(np.allclose(nm_b_grad, layer.b_grad))
def test_backward2(self): layer = ConvLayer(2, 1, 3) x = fake_data((1, 2, 4, 4)) layer.W = fake_data((1, 2, 3, 3)) layer.b = fake_data(layer.b.shape) y = layer.forward(x) x_grad = layer.backward(np.ones_like(y)) # do numerical gradients nm_x_grad = numerical_gradient(layer, x, x) nm_w_grad = numerical_gradient(layer, x, layer.W) nm_b_grad = numerical_gradient(layer, x, layer.b) self.assertTrue(np.allclose(nm_x_grad, x_grad)) #print("expected", nm_x_grad) #print(x_grad) self.assertTrue(np.allclose(nm_w_grad, layer.W_grad)) #print("expected2", nm_w_grad) #print(layer.W_grad) self.assertTrue(np.allclose(nm_b_grad, layer.b_grad))
def test_backward1(self): layer = FlattenLayer() x = fake_data((1, 2, 3, 3)) y = layer.forward(x) x_grad = layer.backward(np.ones_like(y)) # do numerical gradients nm_x_grad = numerical_gradient(layer, x, x) print(x_grad) print(nm_x_grad) self.assertTrue(np.allclose(nm_x_grad, x_grad))