def test_invalid_tx_in_compactblock(self, test_node, use_segwit=True): node = self.nodes[0] assert len(self.utxos) utxo = self.utxos[0] block = self.build_block_with_transactions(node, utxo, 5) del block.vtx[3] block.hashMerkleRoot = block.calc_merkle_root() if use_segwit: # If we're testing with segwit, also drop the coinbase witness, # but include the witness commitment. add_witness_commitment(block) block.vtx[0].wit.vtxinwit = [] block.solve() # Now send the compact block with all transactions prefilled, and # verify that we don't get disconnected. comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block, prefill_list=[0, 1, 2, 3, 4], use_witness=use_segwit) msg = msg_cmpctblock(comp_block.to_p2p()) test_node.send_and_ping(msg) # Check that the tip didn't advance assert int(node.getbestblockhash(), 16) is not block.sha256 test_node.sync_with_ping()
def test_incorrect_blocktxn_response(self, node, test_node, version): if (len(self.utxos) == 0): self.make_utxos() utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 10) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) # Relay the first 5 transactions from the block in advance for tx in block.vtx[1:6]: test_node.send_message(msg_tx(tx)) test_node.sync_with_ping() # Make sure all transactions were accepted. mempool = node.getrawmempool() for tx in block.vtx[1:6]: assert(tx.hash in mempool) # Send compact block comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block, prefill_list=[0], use_witness=(version == 2)) test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) absolute_indexes = [] with mininode_lock: assert("getblocktxn" in test_node.last_message) absolute_indexes = test_node.last_message["getblocktxn"].block_txn_request.to_absolute() assert_equal(absolute_indexes, [6, 7, 8, 9, 10]) # Now give an incorrect response. # Note that it's possible for bitcoind to be smart enough to know we're # lying, since it could check to see if the shortid matches what we're # sending, and eg disconnect us for misbehavior. If that behavior # change was made, we could just modify this test by having a # different peer provide the block further down, so that we're still # verifying that the block isn't marked bad permanently. This is good # enough for now. msg = msg_blocktxn() if version==2: msg = msg_witness_blocktxn() msg.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]] + block.vtx[7:]) test_node.send_and_ping(msg) # Tip should not have updated assert_equal(int(node.getbestblockhash(), 16), block.hashPrevBlock) # We should receive a getdata request wait_until(lambda: "getdata" in test_node.last_message, timeout=10, lock=mininode_lock) assert_equal(len(test_node.last_message["getdata"].inv), 1) assert(test_node.last_message["getdata"].inv[0].type == 2 or test_node.last_message["getdata"].inv[0].type == 2|MSG_WITNESS_FLAG) assert_equal(test_node.last_message["getdata"].inv[0].hash, block.sha256) # Deliver the block if version==2: test_node.send_and_ping(msg_witness_block(block)) else: test_node.send_and_ping(msg_block(block)) assert_equal(int(node.getbestblockhash(), 16), block.sha256)
def test_compactblocks_not_at_tip(self, test_node): node = self.nodes[0] # Test that requesting old compactblocks doesn't work. MAX_CMPCTBLOCK_DEPTH = 5 new_blocks = [] for i in range(MAX_CMPCTBLOCK_DEPTH + 1): test_node.clear_block_announcement() new_blocks.append(node.generate(1)[0]) wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock) test_node.clear_block_announcement() test_node.send_message(msg_getdata([CInv(4, int(new_blocks[0], 16))])) wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30, lock=mininode_lock) test_node.clear_block_announcement() node.generate(1) wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock) test_node.clear_block_announcement() with mininode_lock: test_node.last_message.pop("block", None) test_node.send_message(msg_getdata([CInv(4, int(new_blocks[0], 16))])) wait_until(lambda: "block" in test_node.last_message, timeout=30, lock=mininode_lock) with mininode_lock: test_node.last_message["block"].block.calc_sha256() assert_equal(test_node.last_message["block"].block.sha256, int(new_blocks[0], 16)) # Generate an old compactblock, and verify that it's not accepted. cur_height = node.getblockcount() hashPrevBlock = int(node.getblockhash(cur_height - 5), 16) block = self.build_block_on_tip(node) block.hashPrevBlock = hashPrevBlock block.solve() comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block) test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) tips = node.getchaintips() found = False for x in tips: if x["hash"] == block.hash: assert_equal(x["status"], "headers-only") found = True break assert found # Requesting this block via getblocktxn should silently fail # (to avoid fingerprinting attacks). msg = msg_getblocktxn() msg.block_txn_request = BlockTransactionsRequest(block.sha256, [0]) with mininode_lock: test_node.last_message.pop("blocktxn", None) test_node.send_and_ping(msg) with mininode_lock: assert "blocktxn" not in test_node.last_message
def announce_cmpct_block(node, peer): utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) cmpct_block = HeaderAndShortIDs() cmpct_block.initialize_from_block(block) msg = msg_cmpctblock(cmpct_block.to_p2p()) peer.send_and_ping(msg) with mininode_lock: assert "getblocktxn" in peer.last_message return block, cmpct_block
def test_compactblock_requests(self, test_node, segwit=True): version = test_node.cmpct_version node = self.nodes[0] # Try announcing a block with an inv or header, expect a compactblock # request for announce in ["inv", "header"]: block = self.build_block_on_tip(node, segwit=segwit) with mininode_lock: test_node.last_message.pop("getdata", None) if announce == "inv": test_node.send_message(msg_inv([CInv(2, block.sha256)])) wait_until(lambda: "getheaders" in test_node.last_message, timeout=30, lock=mininode_lock) test_node.send_header_for_blocks([block]) else: test_node.send_header_for_blocks([block]) wait_until(lambda: "getdata" in test_node.last_message, timeout=30, lock=mininode_lock) assert_equal(len(test_node.last_message["getdata"].inv), 1) assert_equal(test_node.last_message["getdata"].inv[0].type, 4) assert_equal(test_node.last_message["getdata"].inv[0].hash, block.sha256) # Send back a compactblock message that omits the coinbase comp_block = HeaderAndShortIDs() comp_block.header = CBlockHeader(block) comp_block.nonce = 0 [k0, k1] = comp_block.get_siphash_keys() coinbase_hash = block.vtx[0].sha256 if version == 2: coinbase_hash = block.vtx[0].calc_sha256(True) comp_block.shortids = [calculate_shortid(k0, k1, coinbase_hash)] test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) assert_equal(int(node.getbestblockhash(), 16), block.hashPrevBlock) # Expect a getblocktxn message. with mininode_lock: assert "getblocktxn" in test_node.last_message absolute_indexes = test_node.last_message["getblocktxn"].block_txn_request.to_absolute() assert_equal(absolute_indexes, [0]) # should be a coinbase request # Send the coinbase, and verify that the tip advances. if version == 2: msg = msg_witness_blocktxn() else: msg = msg_blocktxn() msg.block_transactions.blockhash = block.sha256 msg.block_transactions.transactions = [block.vtx[0]] test_node.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), block.sha256)
def test_getblocktxn_requests(self, node, test_node, version): with_witness = (version==2) def test_getblocktxn_response(compact_block, peer, expected_result): msg = msg_cmpctblock(compact_block.to_p2p()) peer.send_and_ping(msg) with mininode_lock: assert("getblocktxn" in peer.last_message) absolute_indexes = peer.last_message["getblocktxn"].block_txn_request.to_absolute() assert_equal(absolute_indexes, expected_result) def test_tip_after_message(node, peer, msg, tip): peer.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), tip) # First try announcing compactblocks that won't reconstruct, and verify # that we receive getblocktxn messages back. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block, use_witness=with_witness) test_getblocktxn_response(comp_block, test_node, [1, 2, 3, 4, 5]) msg_bt = msg_blocktxn() if with_witness: msg_bt = msg_witness_blocktxn() # serialize with witnesses msg_bt.block_transactions = BlockTransactions(block.sha256, block.vtx[1:]) test_tip_after_message(node, test_node, msg_bt, block.sha256) utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) # Now try interspersing the prefilled transactions comp_block.initialize_from_block(block, prefill_list=[0, 1, 5], use_witness=with_witness) test_getblocktxn_response(comp_block, test_node, [2, 3, 4]) msg_bt.block_transactions = BlockTransactions(block.sha256, block.vtx[2:5]) test_tip_after_message(node, test_node, msg_bt, block.sha256) # Now try giving one transaction ahead of time. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) test_node.send_and_ping(msg_tx(block.vtx[1])) assert(block.vtx[1].hash in node.getrawmempool()) # Prefill 4 out of the 6 transactions, and verify that only the one # that was not in the mempool is requested. comp_block.initialize_from_block(block, prefill_list=[0, 2, 3, 4], use_witness=with_witness) test_getblocktxn_response(comp_block, test_node, [5]) msg_bt.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]]) test_tip_after_message(node, test_node, msg_bt, block.sha256) # Now provide all transactions to the node before the block is # announced and verify reconstruction happens immediately. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 10) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) for tx in block.vtx[1:]: test_node.send_message(msg_tx(tx)) test_node.sync_with_ping() # Make sure all transactions were accepted. mempool = node.getrawmempool() for tx in block.vtx[1:]: assert(tx.hash in mempool) # Clear out last request. with mininode_lock: test_node.last_message.pop("getblocktxn", None) # Send compact block comp_block.initialize_from_block(block, prefill_list=[0], use_witness=with_witness) test_tip_after_message(node, test_node, msg_cmpctblock(comp_block.to_p2p()), block.sha256) with mininode_lock: # Shouldn't have gotten a request for any transaction assert("getblocktxn" not in test_node.last_message)
def test_incorrect_blocktxn_response(self, node, test_node, version): if (len(self.utxos) == 0): self.make_utxos() utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 10) self.utxos.append( [block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) # Relay the first 5 transactions from the block in advance for tx in block.vtx[1:6]: test_node.send_message(msg_tx(tx)) test_node.sync_with_ping() # Make sure all transactions were accepted. mempool = node.getrawmempool() for tx in block.vtx[1:6]: assert (tx.hash in mempool) # Send compact block comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block, prefill_list=[0], use_witness=(version == 2)) test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) absolute_indexes = [] with mininode_lock: assert ("getblocktxn" in test_node.last_message) absolute_indexes = test_node.last_message[ "getblocktxn"].block_txn_request.to_absolute() assert_equal(absolute_indexes, [6, 7, 8, 9, 10]) # Now give an incorrect response. # Note that it's possible for xpchaind to be smart enough to know we're # lying, since it could check to see if the shortid matches what we're # sending, and eg disconnect us for misbehavior. If that behavior # change was made, we could just modify this test by having a # different peer provide the block further down, so that we're still # verifying that the block isn't marked bad permanently. This is good # enough for now. msg = msg_blocktxn() if version == 2: msg = msg_witness_blocktxn() msg.block_transactions = BlockTransactions( block.sha256, [block.vtx[5]] + block.vtx[7:]) test_node.send_and_ping(msg) # Tip should not have updated assert_equal(int(node.getbestblockhash(), 16), block.hashPrevBlock) # We should receive a getdata request wait_until(lambda: "getdata" in test_node.last_message, timeout=10, lock=mininode_lock) assert_equal(len(test_node.last_message["getdata"].inv), 1) assert (test_node.last_message["getdata"].inv[0].type == 2 or test_node.last_message["getdata"].inv[0].type == 2 | MSG_WITNESS_FLAG) assert_equal(test_node.last_message["getdata"].inv[0].hash, block.sha256) # Deliver the block if version == 2: test_node.send_and_ping(msg_witness_block(block)) else: test_node.send_and_ping(msg_block(block)) assert_equal(int(node.getbestblockhash(), 16), block.sha256)
def test_getblocktxn_requests(self, node, test_node, version): with_witness = (version == 2) def test_getblocktxn_response(compact_block, peer, expected_result): msg = msg_cmpctblock(compact_block.to_p2p()) peer.send_and_ping(msg) with mininode_lock: assert ("getblocktxn" in peer.last_message) absolute_indexes = peer.last_message[ "getblocktxn"].block_txn_request.to_absolute() assert_equal(absolute_indexes, expected_result) def test_tip_after_message(node, peer, msg, tip): peer.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), tip) # First try announcing compactblocks that won't reconstruct, and verify # that we receive getblocktxn messages back. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append( [block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block, use_witness=with_witness) test_getblocktxn_response(comp_block, test_node, [1, 2, 3, 4, 5]) msg_bt = msg_blocktxn() if with_witness: msg_bt = msg_witness_blocktxn() # serialize with witnesses msg_bt.block_transactions = BlockTransactions(block.sha256, block.vtx[1:]) test_tip_after_message(node, test_node, msg_bt, block.sha256) utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append( [block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) # Now try interspersing the prefilled transactions comp_block.initialize_from_block(block, prefill_list=[0, 1, 5], use_witness=with_witness) test_getblocktxn_response(comp_block, test_node, [2, 3, 4]) msg_bt.block_transactions = BlockTransactions(block.sha256, block.vtx[2:5]) test_tip_after_message(node, test_node, msg_bt, block.sha256) # Now try giving one transaction ahead of time. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append( [block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) test_node.send_and_ping(msg_tx(block.vtx[1])) assert (block.vtx[1].hash in node.getrawmempool()) # Prefill 4 out of the 6 transactions, and verify that only the one # that was not in the mempool is requested. comp_block.initialize_from_block(block, prefill_list=[0, 2, 3, 4], use_witness=with_witness) test_getblocktxn_response(comp_block, test_node, [5]) msg_bt.block_transactions = BlockTransactions(block.sha256, [block.vtx[5]]) test_tip_after_message(node, test_node, msg_bt, block.sha256) # Now provide all transactions to the node before the block is # announced and verify reconstruction happens immediately. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 10) self.utxos.append( [block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) for tx in block.vtx[1:]: test_node.send_message(msg_tx(tx)) test_node.sync_with_ping() # Make sure all transactions were accepted. mempool = node.getrawmempool() for tx in block.vtx[1:]: assert (tx.hash in mempool) # Clear out last request. with mininode_lock: test_node.last_message.pop("getblocktxn", None) # Send compact block comp_block.initialize_from_block(block, prefill_list=[0], use_witness=with_witness) test_tip_after_message(node, test_node, msg_cmpctblock(comp_block.to_p2p()), block.sha256) with mininode_lock: # Shouldn't have gotten a request for any transaction assert ("getblocktxn" not in test_node.last_message)
def test_compactblocks_not_at_tip(self, node, test_node): # Test that requesting old compactblocks doesn't work. MAX_CMPCTBLOCK_DEPTH = 5 new_blocks = [] for i in range(MAX_CMPCTBLOCK_DEPTH + 1): test_node.clear_block_announcement() new_blocks.append(node.generate(1)[0]) wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock) test_node.clear_block_announcement() test_node.send_message(msg_getdata([CInv(4, int(new_blocks[0], 16))])) wait_until(lambda: "cmpctblock" in test_node.last_message, timeout=30, lock=mininode_lock) test_node.clear_block_announcement() node.generate(1) wait_until(test_node.received_block_announcement, timeout=30, lock=mininode_lock) test_node.clear_block_announcement() with mininode_lock: test_node.last_message.pop("block", None) test_node.send_message(msg_getdata([CInv(4, int(new_blocks[0], 16))])) wait_until(lambda: "block" in test_node.last_message, timeout=30, lock=mininode_lock) with mininode_lock: test_node.last_message["block"].block.calc_sha256() assert_equal(test_node.last_message["block"].block.sha256, int(new_blocks[0], 16)) # Generate an old compactblock, and verify that it's not accepted. cur_height = node.getblockcount() hashPrevBlock = int(node.getblockhash(cur_height - 5), 16) block = self.build_block_on_tip(node) block.hashPrevBlock = hashPrevBlock block.block_height = cur_height - 4 block.solve() comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block) test_node.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) tips = node.getchaintips() found = False for x in tips: if x["hash"] == block.hash: assert_equal(x["status"], "headers-only") found = True break assert (found) # Requesting this block via getblocktxn should silently fail # (to avoid fingerprinting attacks). msg = msg_getblocktxn() msg.block_txn_request = BlockTransactionsRequest(block.sha256, [0]) with mininode_lock: test_node.last_message.pop("blocktxn", None) test_node.send_and_ping(msg) with mininode_lock: assert "blocktxn" not in test_node.last_message
def run_test(self): node = self.nodes[0] default_p2p = node.add_p2p_connection(P2PDataStore()) test_p2p = node.add_p2p_connection(TestP2PConn()) self.genesis_hash = int(node.getbestblockhash(), 16) self.block_heights[self.genesis_hash] = 0 spendable_outputs = [] # save the current tip so it can be spent by a later block def save_spendable_output(): spendable_outputs.append(self.tip) # get an output that we previously marked as spendable def get_spendable_output(): return PreviousSpendableOutput(spendable_outputs.pop(0).vtx[0], 0) # move the tip back to a previous block def tip(number): self.tip = self.blocks[number] # shorthand for functions block = self.next_block # Create a new block block(0) save_spendable_output() default_p2p.send_blocks_and_test([self.tip], node) # Now we need that block to mature so we can spend the coinbase. maturity_blocks = [] for i in range(99): block(5000 + i) maturity_blocks.append(self.tip) save_spendable_output() # Get to one block of the May 15, 2018 HF activation for i in range(6): block(5100 + i) maturity_blocks.append(self.tip) # Send it all to the node at once. default_p2p.send_blocks_and_test(maturity_blocks, node) # collect spendable outputs now to avoid cluttering the code later on out = [] for i in range(100): out.append(get_spendable_output()) # Check that compact block also work for big blocks # Wait for SENDCMPCT def received_sendcmpct(): return (test_p2p.last_sendcmpct is not None) wait_until(received_sendcmpct, timeout=30) sendcmpct = msg_sendcmpct() sendcmpct.version = 1 sendcmpct.announce = True test_p2p.send_and_ping(sendcmpct) # Exchange headers def received_getheaders(): return (test_p2p.last_getheaders is not None) wait_until(received_getheaders, timeout=30) # Return the favor test_p2p.send_message(test_p2p.last_getheaders) # Wait for the header list def received_headers(): return (test_p2p.last_headers is not None) wait_until(received_headers, timeout=30) # It's like we know about the same headers ! test_p2p.send_message(test_p2p.last_headers) # Send a block b1 = block(1, spend=out[0], block_size=ONE_MEGABYTE + 1) default_p2p.send_blocks_and_test([self.tip], node) # Checks the node to forward it via compact block def received_block(): return (test_p2p.last_cmpctblock is not None) wait_until(received_block, timeout=30) # Was it our block ? cmpctblk_header = test_p2p.last_cmpctblock.header_and_shortids.header cmpctblk_header.calc_sha256() assert cmpctblk_header.sha256 == b1.sha256 # Send a large block with numerous transactions. test_p2p.clear_block_data() b2 = block(2, spend=out[1], extra_txns=70000, block_size=self.excessive_block_size - 1000) default_p2p.send_blocks_and_test([self.tip], node) # Checks the node forwards it via compact block wait_until(received_block, timeout=30) # Was it our block ? cmpctblk_header = test_p2p.last_cmpctblock.header_and_shortids.header cmpctblk_header.calc_sha256() assert cmpctblk_header.sha256 == b2.sha256 # In order to avoid having to resend a ton of transactions, we invalidate # b2, which will send all its transactions in the mempool. Note that this # assumes reorgs will insert low-fee transactions back into the # mempool. node.invalidateblock(node.getbestblockhash()) # Let's send a compact block and see if the node accepts it. # Let's modify b2 and use it so that we can reuse the mempool. tx = b2.vtx[0] tx.vout.append(CTxOut(0, CScript([random.randint(0, 256), OP_RETURN]))) tx.rehash() b2.vtx[0] = tx b2.hashMerkleRoot = b2.calc_merkle_root() b2.solve() # Now we create the compact block and send it comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(b2) test_p2p.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) # Check that compact block is received properly assert int(node.getbestblockhash(), 16) == b2.sha256
self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) for tx in block.vtx[1:]: test_node.send_message(msg_tx(tx)) test_node.sync_with_ping() # Make sure all transactions were accepted. mempool = node.getrawmempool() for tx in block.vtx[1:]: assert tx.hash in mempool # Clear out last request. with mininode_lock: test_node.last_message.pop("getblocktxn", None) # Send compact block comp_block.initialize_from_block(block, prefill_list=[0], use_witness=with_witness) test_tip_after_message(node, test_node, msg_cmpctblock(comp_block.to_p2p()), block.sha256) with mininode_lock: # Shouldn't have gotten a request for any transaction assert "getblocktxn" not in test_node.last_message # Incorrectly responding to a getblocktxn shouldn't cause the block to be # permanently failed. def test_incorrect_blocktxn_response(self, test_node): version = test_node.cmpct_version node = self.nodes[0] utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 10) self.utxos.append([block.vtx[-1].sha256, 0, block.vtx[-1].vout[0].nValue]) # Relay the first 5 transactions from the block in advance for tx in block.vtx[1:6]:
def test_getblocktxn_requests(self, node, test_node): def test_tip_after_message(node, peer, msg, tip): peer.send_and_ping(msg) assert_equal(int(node.getbestblockhash(), 16), tip) # First try announcing compactblocks that won't reconstruct, and verify # that we receive getblocktxn messages back. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append( [block.unspent_tx.sha256, 0, block.unspent_tx.vout[0].nValue]) comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(block) test_getblocktxn_response(block, comp_block, test_node, block.vtx[1:]) msg_bt = msg_blocktxn() # serialize with witnesses msg_bt.block_transactions = BlockTransactions(block.sha256, block.vtx[1:]) test_tip_after_message(node, test_node, msg_bt, block.sha256) utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append( [block.unspent_tx.sha256, 0, block.unspent_tx.vout[0].nValue]) # Now try interspersing the prefilled transactions comp_block.initialize_from_block(block, [block.first_tx, block.unspent_tx]) test_getblocktxn_response(block, comp_block, test_node, block.middle_txs) msg_bt.block_transactions = BlockTransactions( block.sha256, sorted(block.middle_txs, key=lambda tx: tx.hash)) test_tip_after_message(node, test_node, msg_bt, block.sha256) # Now try giving one transaction ahead of time. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 5) self.utxos.append( [block.unspent_tx.sha256, 0, block.unspent_tx.vout[0].nValue]) test_node.send_and_ping(msg_tx(block.first_tx)) assert block.first_tx.hash in node.getrawmempool() # Prefill 4 out of the 6 transactions, and verify that only the one # that was not in the mempool is requested. comp_block.initialize_from_block(block, block.middle_txs) test_getblocktxn_response(block, comp_block, test_node, [block.unspent_tx]) msg_bt.block_transactions = BlockTransactions(block.sha256, [block.unspent_tx]) test_tip_after_message(node, test_node, msg_bt, block.sha256) # Now provide all transactions to the node before the block is # announced and verify reconstruction happens immediately. utxo = self.utxos.pop(0) block = self.build_block_with_transactions(node, utxo, 10) self.utxos.append( [block.unspent_tx.sha256, 0, block.unspent_tx.vout[0].nValue]) for tx in block.vtx[1:]: test_node.send_message(msg_tx(tx)) test_node.sync_with_ping() # Make sure all transactions were accepted. mempool = node.getrawmempool() for tx in block.vtx[1:]: assert tx.hash in mempool # Clear out last request. with mininode_lock: test_node.last_message.pop("getblocktxn", None) # Send compact block comp_block.initialize_from_block(block) test_tip_after_message(node, test_node, msg_cmpctblock(comp_block.to_p2p()), block.sha256) with mininode_lock: # Shouldn't have gotten a request for any transaction assert "getblocktxn" not in test_node.last_message
def get_tests(self): self.genesis_hash = int(self.nodes[0].getbestblockhash(), 16) self.block_heights[self.genesis_hash] = 0 spendable_outputs = [] # save the current tip so it can be spent by a later block def save_spendable_output(): spendable_outputs.append(self.tip) # get an output that we previously marked as spendable def get_spendable_output(): return PreviousSpendableOutput(spendable_outputs.pop(0).vtx[0], 0) # returns a test case that asserts that the current tip was accepted def accepted(): return TestInstance([[self.tip, True]]) # returns a test case that asserts that the current tip was rejected def rejected(reject=None): if reject is None: return TestInstance([[self.tip, False]]) else: return TestInstance([[self.tip, reject]]) # move the tip back to a previous block def tip(number): self.tip = self.blocks[number] # shorthand for functions block = self.next_block # Create a new block block(0) save_spendable_output() yield accepted() # Now we need that block to mature so we can spend the coinbase. test = TestInstance(sync_every_block=False) for i in range(99): block(5000 + i) test.blocks_and_transactions.append([self.tip, True]) save_spendable_output() # Get to one block of the May 15, 2018 HF activation for i in range(6): block(5100 + i) test.blocks_and_transactions.append([self.tip, True]) # Send it all to the node at once. yield test # collect spendable outputs now to avoid cluttering the code later on out = [] for i in range(100): out.append(get_spendable_output()) # There can be only one network thread running at a time. # Adding a new P2P connection here will try to start the network thread # at init, which will throw an assertion because it's already running. # This requires a few steps to avoid this: # 1/ Disconnect all the TestManager nodes # 2/ Terminate the network thread # 3/ Add the new P2P connection # 4/ Reconnect all the TestManager nodes # 5/ Restart the network thread # Disconnect all the TestManager nodes [n.disconnect_node() for n in self.test.p2p_connections] self.test.wait_for_disconnections() self.test.clear_all_connections() # Wait for the network thread to terminate network_thread_join() # Add the new connection node = self.nodes[0] node.add_p2p_connection(TestNode()) # Reconnect TestManager nodes self.test.add_all_connections(self.nodes) # Restart the network thread network_thread_start() # Wait for connection to be etablished peer = node.p2p peer.wait_for_verack() # Check that compact block also work for big blocks # Wait for SENDCMPCT def received_sendcmpct(): return (peer.last_sendcmpct != None) wait_until(received_sendcmpct, timeout=30) sendcmpct = msg_sendcmpct() sendcmpct.version = 1 sendcmpct.announce = True peer.send_and_ping(sendcmpct) # Exchange headers def received_getheaders(): return (peer.last_getheaders != None) wait_until(received_getheaders, timeout=30) # Return the favor peer.send_message(peer.last_getheaders) # Wait for the header list def received_headers(): return (peer.last_headers != None) wait_until(received_headers, timeout=30) # It's like we know about the same headers ! peer.send_message(peer.last_headers) # Send a block b1 = block(1, spend=out[0], block_size=ONE_MEGABYTE + 1) yield accepted() # Checks the node to forward it via compact block def received_block(): return (peer.last_cmpctblock != None) wait_until(received_block, timeout=30) # Was it our block ? cmpctblk_header = peer.last_cmpctblock.header_and_shortids.header cmpctblk_header.calc_sha256() assert (cmpctblk_header.sha256 == b1.sha256) # Send a large block with numerous transactions. peer.clear_block_data() b2 = block(2, spend=out[1], extra_txns=70000, block_size=self.excessive_block_size - 1000) yield accepted() # Checks the node forwards it via compact block wait_until(received_block, timeout=30) # Was it our block ? cmpctblk_header = peer.last_cmpctblock.header_and_shortids.header cmpctblk_header.calc_sha256() assert (cmpctblk_header.sha256 == b2.sha256) # In order to avoid having to resend a ton of transactions, we invalidate # b2, which will send all its transactions in the mempool. node.invalidateblock(node.getbestblockhash()) # Let's send a compact block and see if the node accepts it. # Let's modify b2 and use it so that we can reuse the mempool. tx = b2.vtx[0] tx.vout.append(CTxOut(0, CScript([random.randint(0, 256), OP_RETURN]))) tx.rehash() b2.vtx[0] = tx b2.hashMerkleRoot = b2.calc_merkle_root() b2.solve() # Now we create the compact block and send it comp_block = HeaderAndShortIDs() comp_block.initialize_from_block(b2) peer.send_and_ping(msg_cmpctblock(comp_block.to_p2p())) # Check that compact block is received properly assert (int(node.getbestblockhash(), 16) == b2.sha256)