def run_test(self):
        node = self.nodes[0]  # alias

        node.add_p2p_connection(P2PTxInvStore())

        self.log.info("Create a new transaction and wait until it's broadcast")
        txid = int(node.sendtoaddress(node.getnewaddress(), 1), 16)

        # Wallet rebroadcast is first scheduled 1 sec after startup (see
        # nNextResend in ResendWalletTransactions()). Sleep for just over a
        # second to be certain that it has been called before the first
        # setmocktime call below.
        time.sleep(1.1)

        # Can take a few seconds due to transaction trickling
        wait_until(lambda: node.p2p.tx_invs_received[txid] >= 1,
                   lock=mininode_lock)

        # Add a second peer since txs aren't rebroadcast to the same peer (see
        # filterInventoryKnown)
        node.add_p2p_connection(P2PTxInvStore())

        self.log.info("Create a block")
        # Create and submit a block without the transaction.
        # Transactions are only rebroadcast if there has been a block at least five minutes
        # after the last time we tried to broadcast. Use mocktime and give an
        # extra minute to be sure.
        block_time = int(time.time()) + 6 * 60
        node.setmocktime(block_time)
        block = create_block(int(node.getbestblockhash(), 16),
                             create_coinbase(node.getblockcount() + 1),
                             block_time)
        block.rehash()
        block.solve()
        node.submitblock(ToHex(block))

        node.syncwithvalidationinterfacequeue()
        now = int(time.time())

        # Transaction should not be rebroadcast within first 12 hours
        # Leave 2 mins for buffer
        twelve_hrs = 12 * 60 * 60
        two_min = 2 * 60
        node.setmocktime(now + twelve_hrs - two_min)
        # ensure enough time has passed for rebroadcast attempt to occur
        time.sleep(2)
        assert_equal(txid in node.p2ps[1].get_invs(), False)

        self.log.info("Bump time & check that transaction is rebroadcast")
        # Transaction should be rebroadcast approximately 24 hours in the future,
        # but can range from 12-36. So bump 36 hours to be sure.
        node.setmocktime(now + 36 * 60 * 60)
        wait_until(lambda: node.p2ps[1].tx_invs_received[txid] >= 1,
                   lock=mininode_lock)
    def test_broadcast(self):
        self.log.info(
            "Test that mempool reattempts delivery of locally submitted transaction"
        )
        node = self.nodes[0]

        min_relay_fee = node.getnetworkinfo()["relayfee"]
        utxos = create_confirmed_utxos(min_relay_fee, node, 10)

        disconnect_nodes(node, 1)

        self.log.info("Generate transactions that only node 0 knows about")

        # generate a wallet txn
        addr = node.getnewaddress()
        wallet_tx_hsh = node.sendtoaddress(addr, 0.0001)

        # generate a txn using sendrawtransaction
        us0 = utxos.pop()
        inputs = [{"txid": us0["txid"], "vout": us0["vout"]}]
        outputs = {addr: 0.0001}
        tx = node.createrawtransaction(inputs, outputs)
        node.settxfee(min_relay_fee)
        txF = node.fundrawtransaction(tx)
        txFS = node.signrawtransactionwithwallet(txF["hex"])
        rpc_tx_hsh = node.sendrawtransaction(txFS["hex"])

        # check that second node doesn't have these two txns
        mempool = self.nodes[1].getrawmempool()
        assert rpc_tx_hsh not in mempool
        assert wallet_tx_hsh not in mempool

        # ensure that unbroadcast txs are persisted to mempool.dat
        self.restart_node(0)

        self.log.info("Reconnect nodes & check if they are sent to node 1")
        connect_nodes(node, 1)

        # fast forward into the future & ensure that the second node has the txns
        node.mockscheduler(15 * 60)  # 15 min in seconds
        self.sync_mempools(timeout=30)
        mempool = self.nodes[1].getrawmempool()
        assert rpc_tx_hsh in mempool
        assert wallet_tx_hsh in mempool

        self.log.info(
            "Add another connection & ensure transactions aren't broadcast again"
        )

        conn = node.add_p2p_connection(P2PTxInvStore())
        node.mockscheduler(15 * 60)
        time.sleep(5)
        assert_equal(len(conn.get_invs()), 0)
示例#3
0
    def test_persist_unbroadcast(self):
        node0 = self.nodes[0]
        self.start_node(0)

        # clear out mempool
        node0.generate(1)

        # disconnect nodes to make a txn that remains in the unbroadcast set.
        disconnect_nodes(node0, 1)
        node0.sendtoaddress(self.nodes[1].getnewaddress(), Decimal("12"))

        # shutdown, then startup with wallet disabled
        self.stop_nodes()
        self.start_node(0, extra_args=["-disablewallet"])

        # check that txn gets broadcast due to unbroadcast logic
        conn = node0.add_p2p_connection(P2PTxInvStore())
        node0.mockscheduler(16 * 60)  # 15 min + 1 for buffer
        wait_until(lambda: len(conn.get_invs()) == 1)
示例#4
0
    def test_persist_unbroadcast(self):
        node0 = self.nodes[0]
        self.start_node(0)

        # clear out mempool
        node0.generate(1)

        # ensure node0 doesn't have any connections
        # make a transaction that will remain in the unbroadcast set
        assert (len(node0.getpeerinfo()) == 0)
        assert (len(node0.p2ps) == 0)
        node0.sendtoaddress(self.nodes[1].getnewaddress(), Decimal("12"))

        # shutdown, then startup with wallet disabled
        self.stop_nodes()
        self.start_node(0, extra_args=["-disablewallet"])

        # check that txn gets broadcast due to unbroadcast logic
        conn = node0.add_p2p_connection(P2PTxInvStore())
        node0.mockscheduler(16 * 60)  # 15 min + 1 for buffer
        wait_until(lambda: len(conn.get_invs()) == 1)
示例#5
0
    def run_test(self):
        # Mine some blocks and have them mature.
        # keep track of invs
        self.nodes[0].add_p2p_connection(P2PTxInvStore())
        self.nodes[0].generate(101)
        utxo = self.nodes[0].listunspent(10)
        txid = utxo[0]['txid']
        vout = utxo[0]['vout']
        value = utxo[0]['amount']

        fee = Decimal("0.0001")
        # MAX_ANCESTORS transactions off a confirmed tx should be fine
        chain = []
        for i in range(MAX_ANCESTORS):
            (txid, sent_value) = self.chain_transaction(
                self.nodes[0], txid, 0, value, fee, 1)
            value = sent_value
            chain.append(txid)

        # Wait until mempool transactions have passed initial broadcast
        # (sent inv and received getdata)
        # Otherwise, getrawmempool may be inconsistent with getmempoolentry if
        # unbroadcast changes in between
        self.nodes[0].p2p.wait_for_broadcast(chain)

        # Check mempool has MAX_ANCESTORS transactions in it, and descendant and ancestor
        # count and fees should look correct
        mempool = self.nodes[0].getrawmempool(True)
        assert_equal(len(mempool), MAX_ANCESTORS)
        descendant_count = 1
        descendant_fees = 0
        descendant_size = 0

        ancestor_size = sum([mempool[tx]['size'] for tx in mempool])
        ancestor_count = MAX_ANCESTORS
        ancestor_fees = sum([mempool[tx]['fee'] for tx in mempool])

        descendants = []
        ancestors = list(chain)
        for x in reversed(chain):
            # Check that getmempoolentry is consistent with getrawmempool
            entry = self.nodes[0].getmempoolentry(x)
            assert_equal(entry, mempool[x])

            # Check that the descendant calculations are correct
            assert_equal(mempool[x]['descendantcount'], descendant_count)
            descendant_fees += mempool[x]['fee']
            assert_equal(mempool[x]['modifiedfee'], mempool[x]['fee'])
            assert_equal(mempool[x]['fees']['base'], mempool[x]['fee'])
            assert_equal(mempool[x]['fees']['modified'],
                         mempool[x]['modifiedfee'])
            assert_equal(mempool[x]['descendantfees'], descendant_fees * COIN)
            assert_equal(mempool[x]['fees']['descendant'], descendant_fees)
            descendant_size += mempool[x]['size']
            assert_equal(mempool[x]['descendantsize'], descendant_size)
            descendant_count += 1

            # Check that ancestor calculations are correct
            assert_equal(mempool[x]['ancestorcount'], ancestor_count)
            assert_equal(mempool[x]['ancestorfees'], ancestor_fees * COIN)
            assert_equal(mempool[x]['ancestorsize'], ancestor_size)
            ancestor_size -= mempool[x]['size']
            ancestor_fees -= mempool[x]['fee']
            ancestor_count -= 1

            # Check that parent/child list is correct
            assert_equal(mempool[x]['spentby'], descendants[-1:])
            assert_equal(mempool[x]['depends'], ancestors[-2:-1])

            # Check that getmempooldescendants is correct
            assert_equal(sorted(descendants), sorted(
                self.nodes[0].getmempooldescendants(x)))

            # Check getmempooldescendants verbose output is correct
            for descendant, dinfo in self.nodes[0].getmempooldescendants(
                    x, True).items():
                assert_equal(dinfo['depends'], [
                             chain[chain.index(descendant) - 1]])
                if dinfo['descendantcount'] > 1:
                    assert_equal(dinfo['spentby'], [
                                 chain[chain.index(descendant) + 1]])
                else:
                    assert_equal(dinfo['spentby'], [])
            descendants.append(x)

            # Check that getmempoolancestors is correct
            ancestors.remove(x)
            assert_equal(sorted(ancestors), sorted(
                self.nodes[0].getmempoolancestors(x)))

            # Check that getmempoolancestors verbose output is correct
            for ancestor, ainfo in self.nodes[0].getmempoolancestors(
                    x, True).items():
                assert_equal(ainfo['spentby'], [
                             chain[chain.index(ancestor) + 1]])
                if ainfo['ancestorcount'] > 1:
                    assert_equal(ainfo['depends'], [
                                 chain[chain.index(ancestor) - 1]])
                else:
                    assert_equal(ainfo['depends'], [])

        # Check that getmempoolancestors/getmempooldescendants correctly handle
        # verbose=true
        v_ancestors = self.nodes[0].getmempoolancestors(chain[-1], True)
        assert_equal(len(v_ancestors), len(chain) - 1)
        for x in v_ancestors.keys():
            assert_equal(mempool[x], v_ancestors[x])
        assert chain[-1] not in v_ancestors.keys()

        v_descendants = self.nodes[0].getmempooldescendants(chain[0], True)
        assert_equal(len(v_descendants), len(chain) - 1)
        for x in v_descendants.keys():
            assert_equal(mempool[x], v_descendants[x])
        assert chain[0] not in v_descendants.keys()

        # Check that ancestor modified fees includes fee deltas from
        # prioritisetransaction
        self.nodes[0].prioritisetransaction(txid=chain[0], fee_delta=1000)
        mempool = self.nodes[0].getrawmempool(True)
        ancestor_fees = 0
        for x in chain:
            ancestor_fees += mempool[x]['fee']
            assert_equal(mempool[x]['fees']['ancestor'],
                         ancestor_fees + Decimal('0.00001'))
            assert_equal(mempool[x]['ancestorfees'],
                         ancestor_fees * COIN + 1000)

        # Undo the prioritisetransaction for later tests
        self.nodes[0].prioritisetransaction(txid=chain[0], fee_delta=-1000)

        # Check that descendant modified fees includes fee deltas from
        # prioritisetransaction
        self.nodes[0].prioritisetransaction(txid=chain[-1], fee_delta=1000)
        mempool = self.nodes[0].getrawmempool(True)

        descendant_fees = 0
        for x in reversed(chain):
            descendant_fees += mempool[x]['fee']
            assert_equal(mempool[x]['fees']['descendant'],
                         descendant_fees + Decimal('0.00001'))
            assert_equal(mempool[x]['descendantfees'],
                         descendant_fees * COIN + 1000)

        # Adding one more transaction on to the chain should fail.
        assert_raises_rpc_error(-26, "too-long-mempool-chain",
                                self.chain_transaction, self.nodes[0], txid, vout, value, fee, 1)

        # Check that prioritising a tx before it's added to the mempool works
        # First clear the mempool by mining a block.
        self.nodes[0].generate(1)
        self.sync_blocks()
        assert_equal(len(self.nodes[0].getrawmempool()), 0)
        # Prioritise a transaction that has been mined, then add it back to the
        # mempool by using invalidateblock.
        self.nodes[0].prioritisetransaction(txid=chain[-1], fee_delta=2000)
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
        # Keep node1's tip synced with node0
        self.nodes[1].invalidateblock(self.nodes[1].getbestblockhash())

        # Now check that the transaction is in the mempool, with the right
        # modified fee
        mempool = self.nodes[0].getrawmempool(True)

        descendant_fees = 0
        for x in reversed(chain):
            descendant_fees += mempool[x]['fee']
            if (x == chain[-1]):
                assert_equal(mempool[x]['modifiedfee'],
                             mempool[x]['fee'] + satoshi_round(0.00002))
                assert_equal(mempool[x]['fees']['modified'],
                             mempool[x]['fee'] + satoshi_round(0.00002))
            assert_equal(mempool[x]['descendantfees'],
                         descendant_fees * COIN + 2000)
            assert_equal(mempool[x]['fees']['descendant'],
                         descendant_fees + satoshi_round(0.00002))

        # Check that node1's mempool is as expected (-> custom ancestor limit)
        mempool0 = self.nodes[0].getrawmempool(False)
        mempool1 = self.nodes[1].getrawmempool(False)
        assert_equal(len(mempool1), MAX_ANCESTORS_CUSTOM)
        assert set(mempool1).issubset(set(mempool0))
        for tx in chain[:MAX_ANCESTORS_CUSTOM]:
            assert tx in mempool1
        # TODO: more detailed check of node1's mempool (fees etc.)
        # check transaction unbroadcast info (should be false if in both
        # mempools)
        mempool = self.nodes[0].getrawmempool(True)
        for tx in mempool:
            assert_equal(mempool[tx]['unbroadcast'], False)

        # TODO: test ancestor size limits

        # Now test descendant chain limits
        txid = utxo[1]['txid']
        value = utxo[1]['amount']
        vout = utxo[1]['vout']

        transaction_package = []
        tx_children = []
        # First create one parent tx with 10 children
        (txid, sent_value) = self.chain_transaction(
            self.nodes[0], txid, vout, value, fee, 10)
        parent_transaction = txid
        for i in range(10):
            transaction_package.append(
                {'txid': txid, 'vout': i, 'amount': sent_value})

        # Sign and send up to MAX_DESCENDANT transactions chained off the
        # parent tx
        for i in range(MAX_DESCENDANTS - 1):
            utxo = transaction_package.pop(0)
            (txid, sent_value) = self.chain_transaction(
                self.nodes[0], utxo['txid'], utxo['vout'], utxo['amount'], fee, 10)
            if utxo['txid'] is parent_transaction:
                tx_children.append(txid)
            for j in range(10):
                transaction_package.append(
                    {'txid': txid, 'vout': j, 'amount': sent_value})

        mempool = self.nodes[0].getrawmempool(True)
        assert_equal(mempool[parent_transaction]
                     ['descendantcount'], MAX_DESCENDANTS)
        assert_equal(sorted(mempool[parent_transaction]
                            ['spentby']), sorted(tx_children))

        for child in tx_children:
            assert_equal(mempool[child]['depends'], [parent_transaction])

        # Sending one more chained transaction will fail
        utxo = transaction_package.pop(0)
        assert_raises_rpc_error(-26, "too-long-mempool-chain", self.chain_transaction,
                                self.nodes[0], utxo['txid'], utxo['vout'], utxo['amount'], fee, 10)

        # TODO: check that node1's mempool is as expected

        # TODO: test descendant size limits

        # Test reorg handling
        # First, the basics:
        self.nodes[0].generate(1)
        self.sync_blocks()
        self.nodes[1].invalidateblock(self.nodes[0].getbestblockhash())
        self.nodes[1].reconsiderblock(self.nodes[0].getbestblockhash())

        # Now test the case where node1 has a transaction T in its mempool that
        # depends on transactions A and B which are in a mined block, and the
        # block containing A and B is disconnected, AND B is not accepted back
        # into node1's mempool because its ancestor count is too high.

        # Create 8 transactions, like so:
        # Tx0 -> Tx1 (vout0)
        #   \--> Tx2 (vout1) -> Tx3 -> Tx4 -> Tx5 -> Tx6 -> Tx7
        #
        # Mine them in the next block, then generate a new tx8 that spends
        # Tx1 and Tx7, and add to node1's mempool, then disconnect the
        # last block.

        # Create tx0 with 2 outputs
        utxo = self.nodes[0].listunspent()
        txid = utxo[0]['txid']
        value = utxo[0]['amount']
        vout = utxo[0]['vout']

        send_value = satoshi_round((value - fee) / 2)
        inputs = [{'txid': txid, 'vout': vout}]
        outputs = {}
        for i in range(2):
            outputs[self.nodes[0].getnewaddress()] = send_value
        rawtx = self.nodes[0].createrawtransaction(inputs, outputs)
        signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx)
        txid = self.nodes[0].sendrawtransaction(signedtx['hex'])
        tx0_id = txid
        value = send_value

        # Create tx1
        tx1_id, _ = self.chain_transaction(
            self.nodes[0], tx0_id, 0, value, fee, 1)

        # Create tx2-7
        vout = 1
        txid = tx0_id
        for i in range(6):
            (txid, sent_value) = self.chain_transaction(
                self.nodes[0], txid, vout, value, fee, 1)
            vout = 0
            value = sent_value

        # Mine these in a block
        self.nodes[0].generate(1)
        self.sync_all()

        # Now generate tx8, with a big fee
        inputs = [{'txid': tx1_id, 'vout': 0}, {'txid': txid, 'vout': 0}]
        outputs = {self.nodes[0].getnewaddress(): send_value + value - 4 * fee}
        rawtx = self.nodes[0].createrawtransaction(inputs, outputs)
        signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx)
        txid = self.nodes[0].sendrawtransaction(signedtx['hex'])
        self.sync_mempools()

        # Now try to disconnect the tip on each node...
        self.nodes[1].invalidateblock(self.nodes[1].getbestblockhash())
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())
        self.sync_blocks()
示例#6
0
    def test_broadcast(self):
        self.log.info(
            "Test that mempool reattempts delivery of locally submitted transaction")
        node = self.nodes[0]

        min_relay_fee = node.getnetworkinfo()["relayfee"]
        create_confirmed_utxos(node, 10)

        disconnect_nodes(node, self.nodes[1])

        self.log.info("Generate transactions that only node 0 knows about")

        # generate a wallet txn
        addr = node.getnewaddress()
        wallet_tx_hsh = node.sendtoaddress(addr, 1)
        utxos = node.listunspent()

        # generate a txn using sendrawtransaction
        us0 = utxos.pop()
        inputs = [{"txid": us0["txid"], "vout": us0["vout"]}]
        outputs = {addr: 1}
        tx = node.createrawtransaction(inputs, outputs)
        node.settxfee(min_relay_fee)
        txF = node.fundrawtransaction(tx)
        txFS = node.signrawtransactionwithwallet(txF["hex"])
        rpc_tx_hsh = node.sendrawtransaction(txFS["hex"])

        # check transactions are in unbroadcast using rpc
        mempoolinfo = self.nodes[0].getmempoolinfo()
        assert_equal(mempoolinfo['unbroadcastcount'], 2)
        mempool = self.nodes[0].getrawmempool(True)
        for tx in mempool:
            assert_equal(mempool[tx]['unbroadcast'], True)

        # check that second node doesn't have these two txns
        mempool = self.nodes[1].getrawmempool()
        assert rpc_tx_hsh not in mempool
        assert wallet_tx_hsh not in mempool

        # ensure that unbroadcast txs are persisted to mempool.dat
        self.restart_node(0)

        self.log.info("Reconnect nodes & check if they are sent to node 1")
        connect_nodes(node, self.nodes[1])

        # fast forward into the future & ensure that the second node has the
        # txns
        node.mockscheduler(MAX_INITIAL_BROADCAST_DELAY)
        self.sync_mempools(timeout=30)
        mempool = self.nodes[1].getrawmempool()
        assert rpc_tx_hsh in mempool
        assert wallet_tx_hsh in mempool

        # check that transactions are no longer in first node's unbroadcast set
        mempool = self.nodes[0].getrawmempool(True)
        for tx in mempool:
            assert_equal(mempool[tx]['unbroadcast'], False)

        self.log.info(
            "Add another connection & ensure transactions aren't broadcast again")

        conn = node.add_p2p_connection(P2PTxInvStore())
        node.mockscheduler(MAX_INITIAL_BROADCAST_DELAY)
        # allow sufficient time for possibility of broadcast
        time.sleep(2)
        assert_equal(len(conn.get_invs()), 0)

        disconnect_nodes(node, self.nodes[1])
        node.disconnect_p2ps()