示例#1
0
    def check_tx_relay(self):
        block_op_true = self.nodes[0].getblock(self.nodes[0].generatetoaddress(
            COINBASE_MATURITY + 1,
            convert_btc_bech32_address_to_qtum(ADDRESS_BCRT1_P2WSH_OP_TRUE))
                                               [0])
        self.sync_all()

        self.log.debug(
            "Create a connection from a whitelisted wallet that rebroadcasts raw txs"
        )
        # A python mininode is needed to send the raw transaction directly. If a full node was used, it could only
        # rebroadcast via the inv-getdata mechanism. However, even for whitelisted connections, a full node would
        # currently not request a txid that is already in the mempool.
        self.restart_node(1, extra_args=["[email protected]"])
        p2p_rebroadcast_wallet = self.nodes[1].add_p2p_connection(
            P2PDataStore())

        self.log.debug("Send a tx from the wallet initially")
        tx = FromHex(
            CTransaction(),
            self.nodes[0].createrawtransaction(
                inputs=[{
                    'txid': block_op_true['tx'][0],
                    'vout': 0,
                }],
                outputs=[{
                    convert_btc_bech32_address_to_qtum(ADDRESS_BCRT1_P2WSH_OP_TRUE):
                    5,
                }]),
        )
        tx.wit.vtxinwit = [CTxInWitness()]
        tx.wit.vtxinwit[0].scriptWitness.stack = [CScript([OP_TRUE])]
        txid = tx.rehash()

        self.log.debug("Wait until tx is in node[1]'s mempool")
        p2p_rebroadcast_wallet.send_txs_and_test([tx], self.nodes[1])

        self.log.debug(
            "Check that node[1] will send the tx to node[0] even though it is already in the mempool"
        )
        connect_nodes(self.nodes[1], 0)
        with self.nodes[1].assert_debug_log(
            ["Force relaying tx {} from whitelisted peer=0".format(txid)]):
            p2p_rebroadcast_wallet.send_txs_and_test([tx], self.nodes[1])
            wait_until(lambda: txid in self.nodes[0].getrawmempool())

        self.log.debug(
            "Check that node[1] will not send an invalid tx to node[0]")
        tx.vout[0].nValue += 1
        txid = tx.rehash()
        p2p_rebroadcast_wallet.send_txs_and_test(
            [tx],
            self.nodes[1],
            success=False,
            reject_reason=
            'Not relaying non-mempool transaction {} from whitelisted peer=0'.
            format(txid),
        )
示例#2
0
    def run_test(self):
        # Create and fund a raw tx for sending 10 BTC
        psbtx1 = self.nodes[0].walletcreatefundedpsbt([], {self.nodes[2].getnewaddress():10})['psbt']

        # Node 1 should not be able to add anything to it but still return the psbtx same as before
        psbtx = self.nodes[1].walletprocesspsbt(psbtx1)['psbt']
        assert_equal(psbtx1, psbtx)

        # Sign the transaction and send
        signed_tx = self.nodes[0].walletprocesspsbt(psbtx)['psbt']
        final_tx = self.nodes[0].finalizepsbt(signed_tx)['hex']
        self.nodes[0].sendrawtransaction(final_tx)

        # Create p2sh, p2wpkh, and p2wsh addresses
        pubkey0 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())['pubkey']
        pubkey1 = self.nodes[1].getaddressinfo(self.nodes[1].getnewaddress())['pubkey']
        pubkey2 = self.nodes[2].getaddressinfo(self.nodes[2].getnewaddress())['pubkey']
        p2sh = self.nodes[1].addmultisigaddress(2, [pubkey0, pubkey1, pubkey2], "", "legacy")['address']
        p2wsh = self.nodes[1].addmultisigaddress(2, [pubkey0, pubkey1, pubkey2], "", "bech32")['address']
        p2sh_p2wsh = self.nodes[1].addmultisigaddress(2, [pubkey0, pubkey1, pubkey2], "", "p2sh-segwit")['address']
        p2wpkh = self.nodes[1].getnewaddress("", "bech32")
        p2pkh = self.nodes[1].getnewaddress("", "legacy")
        p2sh_p2wpkh = self.nodes[1].getnewaddress("", "p2sh-segwit")

        # fund those addresses
        rawtx = self.nodes[0].createrawtransaction([], {p2sh:10, p2wsh:10, p2wpkh:10, p2sh_p2wsh:10, p2sh_p2wpkh:10, p2pkh:10})
        rawtx = self.nodes[0].fundrawtransaction(rawtx, {"changePosition":3})
        signed_tx = self.nodes[0].signrawtransactionwithwallet(rawtx['hex'])['hex']
        txid = self.nodes[0].sendrawtransaction(signed_tx)
        self.nodes[0].generate(6)
        self.sync_all()

        # Find the output pos
        p2sh_pos = -1
        p2wsh_pos = -1
        p2wpkh_pos = -1
        p2pkh_pos = -1
        p2sh_p2wsh_pos = -1
        p2sh_p2wpkh_pos = -1
        decoded = self.nodes[0].decoderawtransaction(signed_tx)
        for out in decoded['vout']:
            if out['scriptPubKey']['addresses'][0] == p2sh:
                p2sh_pos = out['n']
            elif out['scriptPubKey']['addresses'][0] == p2wsh:
                p2wsh_pos = out['n']
            elif out['scriptPubKey']['addresses'][0] == p2wpkh:
                p2wpkh_pos = out['n']
            elif out['scriptPubKey']['addresses'][0] == p2sh_p2wsh:
                p2sh_p2wsh_pos = out['n']
            elif out['scriptPubKey']['addresses'][0] == p2sh_p2wpkh:
                p2sh_p2wpkh_pos = out['n']
            elif out['scriptPubKey']['addresses'][0] == p2pkh:
                p2pkh_pos = out['n']

        # spend single key from node 1
        rawtx = self.nodes[1].walletcreatefundedpsbt([{"txid":txid,"vout":p2wpkh_pos},{"txid":txid,"vout":p2sh_p2wpkh_pos},{"txid":txid,"vout":p2pkh_pos}], {self.nodes[1].getnewaddress():29.99})['psbt']
        walletprocesspsbt_out = self.nodes[1].walletprocesspsbt(rawtx)
        assert_equal(walletprocesspsbt_out['complete'], True)
        self.nodes[1].sendrawtransaction(self.nodes[1].finalizepsbt(walletprocesspsbt_out['psbt'])['hex'])

        # feeRate of 0.1 BTC / KB produces a total fee slightly below -maxtxfee (~0.05280000):
        res = self.nodes[1].walletcreatefundedpsbt([{"txid":txid,"vout":p2wpkh_pos},{"txid":txid,"vout":p2sh_p2wpkh_pos},{"txid":txid,"vout":p2pkh_pos}], {self.nodes[1].getnewaddress():29.99}, 0, {"feeRate": 0.1})
        assert_greater_than(res["fee"], 0.05)
        assert_greater_than(0.06, res["fee"])

        # feeRate of 10 BTC / KB produces a total fee well above -maxtxfee
        # previously this was silently capped at -maxtxfee
        assert_raises_rpc_error(-4, "Fee exceeds maximum configured by -maxtxfee", self.nodes[1].walletcreatefundedpsbt, [{"txid":txid,"vout":p2wpkh_pos},{"txid":txid,"vout":p2sh_p2wpkh_pos},{"txid":txid,"vout":p2pkh_pos}], {self.nodes[1].getnewaddress():29.99}, 0, {"feeRate": 10})

        # partially sign multisig things with node 1
        psbtx = self.nodes[1].walletcreatefundedpsbt([{"txid":txid,"vout":p2wsh_pos},{"txid":txid,"vout":p2sh_pos},{"txid":txid,"vout":p2sh_p2wsh_pos}], {self.nodes[1].getnewaddress():29.99})['psbt']
        walletprocesspsbt_out = self.nodes[1].walletprocesspsbt(psbtx)
        psbtx = walletprocesspsbt_out['psbt']
        assert_equal(walletprocesspsbt_out['complete'], False)

        # partially sign with node 2. This should be complete and sendable
        walletprocesspsbt_out = self.nodes[2].walletprocesspsbt(psbtx)
        assert_equal(walletprocesspsbt_out['complete'], True)
        self.nodes[2].sendrawtransaction(self.nodes[2].finalizepsbt(walletprocesspsbt_out['psbt'])['hex'])

        # check that walletprocesspsbt fails to decode a non-psbt
        rawtx = self.nodes[1].createrawtransaction([{"txid":txid,"vout":p2wpkh_pos}], {self.nodes[1].getnewaddress():9.99})
        assert_raises_rpc_error(-22, "TX decode failed", self.nodes[1].walletprocesspsbt, rawtx)

        # Convert a non-psbt to psbt and make sure we can decode it
        rawtx = self.nodes[0].createrawtransaction([], {self.nodes[1].getnewaddress():10})
        rawtx = self.nodes[0].fundrawtransaction(rawtx)
        new_psbt = self.nodes[0].converttopsbt(rawtx['hex'])
        self.nodes[0].decodepsbt(new_psbt)

        # Make sure that a non-psbt with signatures cannot be converted
        # Error could be either "TX decode failed" (segwit inputs causes parsing to fail) or "Inputs must not have scriptSigs and scriptWitnesses"
        # We must set iswitness=True because the serialized transaction has inputs and is therefore a witness transaction
        signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx['hex'])
        assert_raises_rpc_error(-22, "", self.nodes[0].converttopsbt, hexstring=signedtx['hex'], iswitness=True)
        assert_raises_rpc_error(-22, "", self.nodes[0].converttopsbt, hexstring=signedtx['hex'], permitsigdata=False, iswitness=True)
        # Unless we allow it to convert and strip signatures
        self.nodes[0].converttopsbt(signedtx['hex'], True)

        # Explicitly allow converting non-empty txs
        new_psbt = self.nodes[0].converttopsbt(rawtx['hex'])
        self.nodes[0].decodepsbt(new_psbt)

        # Create outputs to nodes 1 and 2
        node1_addr = self.nodes[1].getnewaddress()
        node2_addr = self.nodes[2].getnewaddress()
        txid1 = self.nodes[0].sendtoaddress(node1_addr, 13)
        txid2 = self.nodes[0].sendtoaddress(node2_addr, 13)
        blockhash = self.nodes[0].generate(6)[0]
        self.sync_all()
        vout1 = find_output(self.nodes[1], txid1, 13, blockhash=blockhash)
        vout2 = find_output(self.nodes[2], txid2, 13, blockhash=blockhash)

        # Create a psbt spending outputs from nodes 1 and 2
        psbt_orig = self.nodes[0].createpsbt([{"txid":txid1,  "vout":vout1}, {"txid":txid2, "vout":vout2}], {self.nodes[0].getnewaddress():25.999})

        # Update psbts, should only have data for one input and not the other
        psbt1 = self.nodes[1].walletprocesspsbt(psbt_orig)['psbt']
        psbt1_decoded = self.nodes[0].decodepsbt(psbt1)
        assert psbt1_decoded['inputs'][0] and not psbt1_decoded['inputs'][1]
        psbt2 = self.nodes[2].walletprocesspsbt(psbt_orig)['psbt']
        psbt2_decoded = self.nodes[0].decodepsbt(psbt2)
        assert not psbt2_decoded['inputs'][0] and psbt2_decoded['inputs'][1]

        # Combine, finalize, and send the psbts
        combined = self.nodes[0].combinepsbt([psbt1, psbt2])
        finalized = self.nodes[0].finalizepsbt(combined)['hex']
        self.nodes[0].sendrawtransaction(finalized)
        self.nodes[0].generate(6)
        self.sync_all()

        # Test additional args in walletcreatepsbt
        # Make sure both pre-included and funded inputs
        # have the correct sequence numbers based on
        # replaceable arg
        block_height = self.nodes[0].getblockcount()
        unspent = self.nodes[0].listunspent()[0]
        psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}], block_height+2, {"replaceable": False}, False)
        decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"])
        for tx_in, psbt_in in zip(decoded_psbt["tx"]["vin"], decoded_psbt["inputs"]):
            assert_greater_than(tx_in["sequence"], MAX_BIP125_RBF_SEQUENCE)
            assert "bip32_derivs" not in psbt_in
        assert_equal(decoded_psbt["tx"]["locktime"], block_height+2)

        # Same construction with only locktime set and RBF explicitly enabled
        psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}], block_height, {"replaceable": True}, True)
        decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"])
        for tx_in, psbt_in in zip(decoded_psbt["tx"]["vin"], decoded_psbt["inputs"]):
            assert_equal(tx_in["sequence"], MAX_BIP125_RBF_SEQUENCE)
            assert "bip32_derivs" in psbt_in
        assert_equal(decoded_psbt["tx"]["locktime"], block_height)

        # Same construction without optional arguments
        psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}])
        decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"])
        for tx_in in decoded_psbt["tx"]["vin"]:
            assert_equal(tx_in["sequence"], MAX_BIP125_RBF_SEQUENCE)
        assert_equal(decoded_psbt["tx"]["locktime"], 0)

        # Same construction without optional arguments, for a node with -walletrbf=0
        unspent1 = self.nodes[1].listunspent()[0]
        psbtx_info = self.nodes[1].walletcreatefundedpsbt([{"txid":unspent1["txid"], "vout":unspent1["vout"]}], [{self.nodes[2].getnewaddress():unspent1["amount"]+1}], block_height)
        decoded_psbt = self.nodes[1].decodepsbt(psbtx_info["psbt"])
        for tx_in in decoded_psbt["tx"]["vin"]:
            assert_greater_than(tx_in["sequence"], MAX_BIP125_RBF_SEQUENCE)

        # Make sure change address wallet does not have P2SH innerscript access to results in success
        # when attempting BnB coin selection
        self.nodes[0].walletcreatefundedpsbt([], [{self.nodes[2].getnewaddress():unspent["amount"]+1}], block_height+2, {"changeAddress":self.nodes[1].getnewaddress()}, False)

        # Regression test for 14473 (mishandling of already-signed witness transaction):
        psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}])
        complete_psbt = self.nodes[0].walletprocesspsbt(psbtx_info["psbt"])
        double_processed_psbt = self.nodes[0].walletprocesspsbt(complete_psbt["psbt"])
        assert_equal(complete_psbt, double_processed_psbt)
        # We don't care about the decode result, but decoding must succeed.
        self.nodes[0].decodepsbt(double_processed_psbt["psbt"])

        # BIP 174 Test Vectors

        # Check that unknown values are just passed through
        unknown_psbt = "cHNidP8BAD8CAAAAAf//////////////////////////////////////////AAAAAAD/////AQAAAAAAAAAAA2oBAAAAAAAACg8BAgMEBQYHCAkPAQIDBAUGBwgJCgsMDQ4PAAA="
        unknown_out = self.nodes[0].walletprocesspsbt(unknown_psbt)['psbt']
        assert_equal(unknown_psbt, unknown_out)

        # Open the data file
        with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data/rpc_psbt.json'), encoding='utf-8') as f:
            d = json.load(f)
            invalids = d['invalid']
            valids = d['valid']
            creators = d['creator']
            signers = d['signer']
            combiners = d['combiner']
            finalizers = d['finalizer']
            extractors = d['extractor']

        # Invalid PSBTs
        for invalid in invalids:
            assert_raises_rpc_error(-22, "TX decode failed", self.nodes[0].decodepsbt, invalid)

        # Valid PSBTs
        for valid in valids:
            self.nodes[0].decodepsbt(valid)

        # Creator Tests
        for creator in creators:
            new_outputs = {}
            for k in creator['outputs']:
                new_key = convert_btc_bech32_address_to_qtum(list(k.keys())[0])
                new_value = list(k.values())[0]
                new_outputs[new_key] = new_value
            creator['outputs'] = new_outputs
            created_tx = self.nodes[0].createpsbt(creator['inputs'], creator['outputs'])
            assert_equal(created_tx, creator['result'])

        # Signer tests
        for i, signer in enumerate(signers):
            self.nodes[2].createwallet("wallet{}".format(i))
            wrpc = self.nodes[2].get_wallet_rpc("wallet{}".format(i))
            for key in signer['privkeys']:
                wrpc.importprivkey(key)
            signed_tx = wrpc.walletprocesspsbt(signer['psbt'])['psbt']
            assert_equal(signed_tx, signer['result'])

        # Combiner test
        for combiner in combiners:
            combined = self.nodes[2].combinepsbt(combiner['combine'])
            assert_equal(combined, combiner['result'])

        # Empty combiner test
        assert_raises_rpc_error(-8, "Parameter 'txs' cannot be empty", self.nodes[0].combinepsbt, [])

        # Finalizer test
        for finalizer in finalizers:
            finalized = self.nodes[2].finalizepsbt(finalizer['finalize'], False)['psbt']
            assert_equal(finalized, finalizer['result'])

        # Extractor test
        for extractor in extractors:
            extracted = self.nodes[2].finalizepsbt(extractor['extract'], True)['hex']
            assert_equal(extracted, extractor['result'])

        # Unload extra wallets
        for i, signer in enumerate(signers):
            self.nodes[2].unloadwallet("wallet{}".format(i))

        self.test_utxo_conversion()

        # Test that psbts with p2pkh outputs are created properly
        p2pkh = self.nodes[0].getnewaddress(address_type='legacy')
        psbt = self.nodes[1].walletcreatefundedpsbt([], [{p2pkh : 1}], 0, {"includeWatching" : True}, True)
        self.nodes[0].decodepsbt(psbt['psbt'])

        # Test decoding error: invalid base64
        assert_raises_rpc_error(-22, "TX decode failed invalid base64", self.nodes[0].decodepsbt, ";definitely not base64;")

        # Send to all types of addresses
        addr1 = self.nodes[1].getnewaddress("", "bech32")
        txid1 = self.nodes[0].sendtoaddress(addr1, 11)
        vout1 = find_output(self.nodes[0], txid1, 11)
        addr2 = self.nodes[1].getnewaddress("", "legacy")
        txid2 = self.nodes[0].sendtoaddress(addr2, 11)
        vout2 = find_output(self.nodes[0], txid2, 11)
        addr3 = self.nodes[1].getnewaddress("", "p2sh-segwit")
        txid3 = self.nodes[0].sendtoaddress(addr3, 11)
        vout3 = find_output(self.nodes[0], txid3, 11)
        self.sync_all()

        def test_psbt_input_keys(psbt_input, keys):
            """Check that the psbt input has only the expected keys."""
            assert_equal(set(keys), set(psbt_input.keys()))

        # Create a PSBT. None of the inputs are filled initially
        psbt = self.nodes[1].createpsbt([{"txid":txid1, "vout":vout1},{"txid":txid2, "vout":vout2},{"txid":txid3, "vout":vout3}], {self.nodes[0].getnewaddress():32.999})
        decoded = self.nodes[1].decodepsbt(psbt)
        test_psbt_input_keys(decoded['inputs'][0], [])
        test_psbt_input_keys(decoded['inputs'][1], [])
        test_psbt_input_keys(decoded['inputs'][2], [])

        # Update a PSBT with UTXOs from the node
        # Bech32 inputs should be filled with witness UTXO. Other inputs should not be filled because they are non-witness
        updated = self.nodes[1].utxoupdatepsbt(psbt)
        decoded = self.nodes[1].decodepsbt(updated)
        test_psbt_input_keys(decoded['inputs'][0], ['witness_utxo'])
        test_psbt_input_keys(decoded['inputs'][1], [])
        test_psbt_input_keys(decoded['inputs'][2], [])

        # Try again, now while providing descriptors, making P2SH-segwit work, and causing bip32_derivs and redeem_script to be filled in
        descs = [self.nodes[1].getaddressinfo(addr)['desc'] for addr in [addr1,addr2,addr3]]
        updated = self.nodes[1].utxoupdatepsbt(psbt=psbt, descriptors=descs)
        decoded = self.nodes[1].decodepsbt(updated)
        test_psbt_input_keys(decoded['inputs'][0], ['witness_utxo', 'bip32_derivs'])
        test_psbt_input_keys(decoded['inputs'][1], [])
        test_psbt_input_keys(decoded['inputs'][2], ['witness_utxo', 'bip32_derivs', 'redeem_script'])

        # Two PSBTs with a common input should not be joinable
        psbt1 = self.nodes[1].createpsbt([{"txid":txid1, "vout":vout1}], {self.nodes[0].getnewaddress():Decimal('10.999')})
        assert_raises_rpc_error(-8, "exists in multiple PSBTs", self.nodes[1].joinpsbts, [psbt1, updated])

        # Join two distinct PSBTs
        addr4 = self.nodes[1].getnewaddress("", "p2sh-segwit")
        txid4 = self.nodes[0].sendtoaddress(addr4, 5)
        vout4 = find_output(self.nodes[0], txid4, 5)
        self.nodes[0].generate(6)
        self.sync_all()
        psbt2 = self.nodes[1].createpsbt([{"txid":txid4, "vout":vout4}], {self.nodes[0].getnewaddress():Decimal('4.999')})
        psbt2 = self.nodes[1].walletprocesspsbt(psbt2)['psbt']
        psbt2_decoded = self.nodes[0].decodepsbt(psbt2)
        assert "final_scriptwitness" in psbt2_decoded['inputs'][0] and "final_scriptSig" in psbt2_decoded['inputs'][0]
        joined = self.nodes[0].joinpsbts([psbt, psbt2])
        joined_decoded = self.nodes[0].decodepsbt(joined)
        assert len(joined_decoded['inputs']) == 4 and len(joined_decoded['outputs']) == 2 and "final_scriptwitness" not in joined_decoded['inputs'][3] and "final_scriptSig" not in joined_decoded['inputs'][3]

        # Check that joining shuffles the inputs and outputs
        # 10 attempts should be enough to get a shuffled join
        shuffled = False
        for i in range(0, 10):
            shuffled_joined = self.nodes[0].joinpsbts([psbt, psbt2])
            shuffled |= joined != shuffled_joined
            if shuffled:
                break
        assert shuffled

        # Newly created PSBT needs UTXOs and updating
        addr = self.nodes[1].getnewaddress("", "p2sh-segwit")
        txid = self.nodes[0].sendtoaddress(addr, 7)
        addrinfo = self.nodes[1].getaddressinfo(addr)
        blockhash = self.nodes[0].generate(6)[0]
        self.sync_all()
        vout = find_output(self.nodes[0], txid, 7, blockhash=blockhash)
        psbt = self.nodes[1].createpsbt([{"txid":txid, "vout":vout}], {self.nodes[0].getnewaddress("", "p2sh-segwit"):Decimal('6.999')})
        analyzed = self.nodes[0].analyzepsbt(psbt)
        assert not analyzed['inputs'][0]['has_utxo'] and not analyzed['inputs'][0]['is_final'] and analyzed['inputs'][0]['next'] == 'updater' and analyzed['next'] == 'updater'

        # After update with wallet, only needs signing
        updated = self.nodes[1].walletprocesspsbt(psbt, False, 'ALL', True)['psbt']
        analyzed = self.nodes[0].analyzepsbt(updated)
        assert analyzed['inputs'][0]['has_utxo'] and not analyzed['inputs'][0]['is_final'] and analyzed['inputs'][0]['next'] == 'signer' and analyzed['next'] == 'signer' and analyzed['inputs'][0]['missing']['signatures'][0] == addrinfo['embedded']['witness_program']

        # Check fee and size things
        assert analyzed['fee'] == Decimal('0.001') and analyzed['estimated_vsize'] == 134 and analyzed['estimated_feerate'] == Decimal('0.00746268')

        # After signing and finalizing, needs extracting
        signed = self.nodes[1].walletprocesspsbt(updated)['psbt']
        analyzed = self.nodes[0].analyzepsbt(signed)
        assert analyzed['inputs'][0]['has_utxo'] and analyzed['inputs'][0]['is_final'] and analyzed['next'] == 'extractor'

        self.log.info("PSBT spending unspendable outputs should have error message and Creator as next")
        analysis = self.nodes[0].analyzepsbt('cHNidP8BAJoCAAAAAljoeiG1ba8MI76OcHBFbDNvfLqlyHV5JPVFiHuyq911AAAAAAD/////g40EJ9DsZQpoqka7CwmK6kQiwHGyyng1Kgd5WdB86h0BAAAAAP////8CcKrwCAAAAAAWAEHYXCtx0AYLCcmIauuBXlCZHdoSTQDh9QUAAAAAFv8/wADXYP/7//////8JxOh0LR2HAI8AAAAAAAEBIADC6wsAAAAAF2oUt/X69ELjeX2nTof+fZ10l+OyAokDAQcJAwEHEAABAACAAAEBIADC6wsAAAAAF2oUt/X69ELjeX2nTof+fZ10l+OyAokDAQcJAwEHENkMak8AAAAA')
        assert_equal(analysis['next'], 'creator')
        assert_equal(analysis['error'], 'PSBT is not valid. Input 0 spends unspendable output')

        self.log.info("PSBT with invalid values should have error message and Creator as next")
        analysis = self.nodes[0].analyzepsbt('cHNidP8BAHECAAAAAfA00BFgAm6tp86RowwH6BMImQNL5zXUcTT97XoLGz0BAAAAAAD/////AgD5ApUAAAAAFgAUKNw0x8HRctAgmvoevm4u1SbN7XL87QKVAAAAABYAFPck4gF7iL4NL4wtfRAKgQbghiTUAAAAAAABAR8AAJPzil4mABYAFJUDtxf2PHo641HEOBOAIvFMNTr2AAAA')
        assert_equal(analysis['next'], 'creator')
        assert_equal(analysis['error'], 'PSBT is not valid. Input 0 has invalid value')

        analysis = self.nodes[0].analyzepsbt('cHNidP8BAHECAAAAAfA00BFgAm6tp86RowwH6BMImQNL5zXUcTT97XoLGz0BAAAAAAD/////AgAAk/OKXiYAFgAUKNw0x8HRctAgmvoevm4u1SbN7XL87QKVAAAAABYAFPck4gF7iL4NL4wtfRAKgQbghiTUAAAAAAABAR8A8gUqAQAAABYAFJUDtxf2PHo641HEOBOAIvFMNTr2AAAA')
        assert_equal(analysis['next'], 'creator')
        assert_equal(analysis['error'], 'PSBT is not valid. Output amount invalid')

        analysis = self.nodes[0].analyzepsbt('cHNidP8BAJoCAAAAAkvEW8NnDtdNtDpsmze+Ht2LH35IJcKv00jKAlUs21RrAwAAAAD/////S8Rbw2cO1020OmybN74e3Ysffkglwq/TSMoCVSzbVGsBAAAAAP7///8CwLYClQAAAAAWABSNJKzjaUb3uOxixsvh1GGE3fW7zQD5ApUAAAAAFgAUKNw0x8HRctAgmvoevm4u1SbN7XIAAAAAAAEAnQIAAAACczMa321tVHuN4GKWKRncycI22aX3uXgwSFUKM2orjRsBAAAAAP7///9zMxrfbW1Ue43gYpYpGdzJwjbZpfe5eDBIVQozaiuNGwAAAAAA/v///wIA+QKVAAAAABl2qRT9zXUVA8Ls5iVqynLHe5/vSe1XyYisQM0ClQAAAAAWABRmWQUcjSjghQ8/uH4Bn/zkakwLtAAAAAAAAQEfQM0ClQAAAAAWABRmWQUcjSjghQ8/uH4Bn/zkakwLtAAAAA==')
        assert_equal(analysis['next'], 'creator')
        assert_equal(analysis['error'], 'PSBT is not valid. Input 0 specifies invalid prevout')

        assert_raises_rpc_error(-25, 'Missing inputs', self.nodes[0].walletprocesspsbt, 'cHNidP8BAJoCAAAAAkvEW8NnDtdNtDpsmze+Ht2LH35IJcKv00jKAlUs21RrAwAAAAD/////S8Rbw2cO1020OmybN74e3Ysffkglwq/TSMoCVSzbVGsBAAAAAP7///8CwLYClQAAAAAWABSNJKzjaUb3uOxixsvh1GGE3fW7zQD5ApUAAAAAFgAUKNw0x8HRctAgmvoevm4u1SbN7XIAAAAAAAEAnQIAAAACczMa321tVHuN4GKWKRncycI22aX3uXgwSFUKM2orjRsBAAAAAP7///9zMxrfbW1Ue43gYpYpGdzJwjbZpfe5eDBIVQozaiuNGwAAAAAA/v///wIA+QKVAAAAABl2qRT9zXUVA8Ls5iVqynLHe5/vSe1XyYisQM0ClQAAAAAWABRmWQUcjSjghQ8/uH4Bn/zkakwLtAAAAAAAAQEfQM0ClQAAAAAWABRmWQUcjSjghQ8/uH4Bn/zkakwLtAAAAA==')
示例#3
0
    def run_test(self):
        self.log.info("Mining blocks...")
        self.nodes[0].generate(1)
        self.nodes[1].generate(1)
        timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime']

        node0_address1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())

        # Check only one address
        assert_equal(node0_address1['ismine'], True)

        # Node 1 sync test
        assert_equal(self.nodes[1].getblockcount(), 1)

        # Address Test - before import
        address_info = self.nodes[1].getaddressinfo(node0_address1['address'])
        assert_equal(address_info['iswatchonly'], False)
        assert_equal(address_info['ismine'], False)

        # RPC importmulti -----------------------------------------------

        # Bitcoin Address (implicit non-internal)
        self.log.info("Should import an address")
        key = get_key(self.nodes[0])
        self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr},
                               "timestamp": "now"},
                              success=True)
        test_address(self.nodes[1],
                     key.p2pkh_addr,
                     iswatchonly=True,
                     ismine=False,
                     timestamp=timestamp,
                     ischange=False)
        watchonly_address = key.p2pkh_addr
        watchonly_timestamp = timestamp

        self.log.info("Should not import an invalid address")
        self.test_importmulti({"scriptPubKey": {"address": "not valid address"},
                               "timestamp": "now"},
                              success=False,
                              error_code=-5,
                              error_message='Invalid address \"not valid address\"')

        # ScriptPubKey + internal
        self.log.info("Should import a scriptPubKey with internal flag")
        key = get_key(self.nodes[0])
        self.test_importmulti({"scriptPubKey": key.p2pkh_script,
                               "timestamp": "now",
                               "internal": True},
                              success=True)
        test_address(self.nodes[1],
                     key.p2pkh_addr,
                     iswatchonly=True,
                     ismine=False,
                     timestamp=timestamp,
                     ischange=True)

        # ScriptPubKey + internal + label
        self.log.info("Should not allow a label to be specified when internal is true")
        key = get_key(self.nodes[0])
        self.test_importmulti({"scriptPubKey": key.p2pkh_script,
                               "timestamp": "now",
                               "internal": True,
                               "label": "Example label"},
                              success=False,
                              error_code=-8,
                              error_message='Internal addresses should not have a label')

        # Nonstandard scriptPubKey + !internal
        self.log.info("Should not import a nonstandard scriptPubKey without internal flag")
        nonstandardScriptPubKey = key.p2pkh_script + CScript([OP_NOP]).hex()
        key = get_key(self.nodes[0])
        self.test_importmulti({"scriptPubKey": nonstandardScriptPubKey,
                               "timestamp": "now"},
                              success=False,
                              error_code=-8,
                              error_message='Internal must be set to true for nonstandard scriptPubKey imports.')
        test_address(self.nodes[1],
                     key.p2pkh_addr,
                     iswatchonly=False,
                     ismine=False,
                     timestamp=None)

        # Address + Public key + !Internal(explicit)
        self.log.info("Should import an address with public key")
        key = get_key(self.nodes[0])
        self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr},
                               "timestamp": "now",
                               "pubkeys": [key.pubkey],
                               "internal": False},
                              success=True,
                              warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."])
        test_address(self.nodes[1],
                     key.p2pkh_addr,
                     iswatchonly=True,
                     ismine=False,
                     timestamp=timestamp)

        # ScriptPubKey + Public key + internal
        self.log.info("Should import a scriptPubKey with internal and with public key")
        key = get_key(self.nodes[0])
        self.test_importmulti({"scriptPubKey": key.p2pkh_script,
                               "timestamp": "now",
                               "pubkeys": [key.pubkey],
                               "internal": True},
                              success=True,
                              warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."])
        test_address(self.nodes[1],
                     key.p2pkh_addr,
                     iswatchonly=True,
                     ismine=False,
                     timestamp=timestamp)

        # Nonstandard scriptPubKey + Public key + !internal
        self.log.info("Should not import a nonstandard scriptPubKey without internal and with public key")
        key = get_key(self.nodes[0])
        self.test_importmulti({"scriptPubKey": nonstandardScriptPubKey,
                               "timestamp": "now",
                               "pubkeys": [key.pubkey]},
                              success=False,
                              error_code=-8,
                              error_message='Internal must be set to true for nonstandard scriptPubKey imports.')
        test_address(self.nodes[1],
                     key.p2pkh_addr,
                     iswatchonly=False,
                     ismine=False,
                     timestamp=None)

        # Address + Private key + !watchonly
        self.log.info("Should import an address with private key")
        key = get_key(self.nodes[0])
        self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr},
                               "timestamp": "now",
                               "keys": [key.privkey]},
                              success=True)
        test_address(self.nodes[1],
                     key.p2pkh_addr,
                     iswatchonly=False,
                     ismine=True,
                     timestamp=timestamp)

        self.log.info("Should not import an address with private key if is already imported")
        self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr},
                               "timestamp": "now",
                               "keys": [key.privkey]},
                              success=False,
                              error_code=-4,
                              error_message='The wallet already contains the private key for this address or script ("' + key.p2pkh_script + '")')

        # Address + Private key + watchonly
        self.log.info("Should import an address with private key and with watchonly")
        key = get_key(self.nodes[0])
        self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr},
                               "timestamp": "now",
                               "keys": [key.privkey],
                               "watchonly": True},
                              success=True,
                              warnings=["All private keys are provided, outputs will be considered spendable. If this is intentional, do not specify the watchonly flag."])
        test_address(self.nodes[1],
                     key.p2pkh_addr,
                     iswatchonly=False,
                     ismine=True,
                     timestamp=timestamp)

        # ScriptPubKey + Private key + internal
        self.log.info("Should import a scriptPubKey with internal and with private key")
        key = get_key(self.nodes[0])
        self.test_importmulti({"scriptPubKey": key.p2pkh_script,
                               "timestamp": "now",
                               "keys": [key.privkey],
                               "internal": True},
                              success=True)
        test_address(self.nodes[1],
                     key.p2pkh_addr,
                     iswatchonly=False,
                     ismine=True,
                     timestamp=timestamp)

        # Nonstandard scriptPubKey + Private key + !internal
        self.log.info("Should not import a nonstandard scriptPubKey without internal and with private key")
        key = get_key(self.nodes[0])
        self.test_importmulti({"scriptPubKey": nonstandardScriptPubKey,
                               "timestamp": "now",
                               "keys": [key.privkey]},
                              success=False,
                              error_code=-8,
                              error_message='Internal must be set to true for nonstandard scriptPubKey imports.')
        test_address(self.nodes[1],
                     key.p2pkh_addr,
                     iswatchonly=False,
                     ismine=False,
                     timestamp=None)

        # P2SH address
        multisig = get_multisig(self.nodes[0])
        self.nodes[1].generate(COINBASE_MATURITY)
        self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00)
        self.nodes[1].generate(1)
        timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime']

        self.log.info("Should import a p2sh")
        self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr},
                               "timestamp": "now"},
                              success=True)
        test_address(self.nodes[1],
                     multisig.p2sh_addr,
                     isscript=True,
                     iswatchonly=True,
                     timestamp=timestamp)
        p2shunspent = self.nodes[1].listunspent(0, 999999, [multisig.p2sh_addr])[0]
        assert_equal(p2shunspent['spendable'], False)
        assert_equal(p2shunspent['solvable'], False)

        # P2SH + Redeem script
        multisig = get_multisig(self.nodes[0])
        self.nodes[1].generate(100)
        self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00)
        self.nodes[1].generate(1)
        timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime']

        self.log.info("Should import a p2sh with respective redeem script")
        self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr},
                               "timestamp": "now",
                               "redeemscript": multisig.redeem_script},
                              success=True,
                              warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."])
        test_address(self.nodes[1],
                     multisig.p2sh_addr, timestamp=timestamp, iswatchonly=True, ismine=False, solvable=True)

        p2shunspent = self.nodes[1].listunspent(0, 999999, [multisig.p2sh_addr])[0]
        assert_equal(p2shunspent['spendable'], False)
        assert_equal(p2shunspent['solvable'], True)

        # P2SH + Redeem script + Private Keys + !Watchonly
        multisig = get_multisig(self.nodes[0])
        self.nodes[1].generate(100)
        self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00)
        self.nodes[1].generate(1)
        timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime']

        self.log.info("Should import a p2sh with respective redeem script and private keys")
        self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr},
                               "timestamp": "now",
                               "redeemscript": multisig.redeem_script,
                               "keys": multisig.privkeys[0:2]},
                              success=True,
                              warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."])
        test_address(self.nodes[1],
                     multisig.p2sh_addr,
                     timestamp=timestamp,
                     ismine=False,
                     iswatchonly=True,
                     solvable=True)

        p2shunspent = self.nodes[1].listunspent(0, 999999, [multisig.p2sh_addr])[0]
        assert_equal(p2shunspent['spendable'], False)
        assert_equal(p2shunspent['solvable'], True)

        # P2SH + Redeem script + Private Keys + Watchonly
        multisig = get_multisig(self.nodes[0])
        self.nodes[1].generate(100)
        self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00)
        self.nodes[1].generate(1)
        timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime']

        self.log.info("Should import a p2sh with respective redeem script and private keys")
        self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr},
                               "timestamp": "now",
                               "redeemscript": multisig.redeem_script,
                               "keys": multisig.privkeys[0:2],
                               "watchonly": True},
                              success=True)
        test_address(self.nodes[1],
                     multisig.p2sh_addr,
                     iswatchonly=True,
                     ismine=False,
                     solvable=True,
                     timestamp=timestamp)

        # Address + Public key + !Internal + Wrong pubkey
        self.log.info("Should not import an address with the wrong public key as non-solvable")
        key = get_key(self.nodes[0])
        wrong_key = get_key(self.nodes[0]).pubkey
        self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr},
                               "timestamp": "now",
                               "pubkeys": [wrong_key]},
                              success=True,
                              warnings=["Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys, witnessscript, or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."])
        test_address(self.nodes[1],
                     key.p2pkh_addr,
                     iswatchonly=True,
                     ismine=False,
                     solvable=False,
                     timestamp=timestamp)

        # ScriptPubKey + Public key + internal + Wrong pubkey
        self.log.info("Should import a scriptPubKey with internal and with a wrong public key as non-solvable")
        key = get_key(self.nodes[0])
        wrong_key = get_key(self.nodes[0]).pubkey
        self.test_importmulti({"scriptPubKey": key.p2pkh_script,
                               "timestamp": "now",
                               "pubkeys": [wrong_key],
                               "internal": True},
                              success=True,
                              warnings=["Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys, witnessscript, or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."])
        test_address(self.nodes[1],
                     key.p2pkh_addr,
                     iswatchonly=True,
                     ismine=False,
                     solvable=False,
                     timestamp=timestamp)

        # Address + Private key + !watchonly + Wrong private key
        self.log.info("Should import an address with a wrong private key as non-solvable")
        key = get_key(self.nodes[0])
        wrong_privkey = get_key(self.nodes[0]).privkey
        self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr},
                               "timestamp": "now",
                               "keys": [wrong_privkey]},
                               success=True,
                               warnings=["Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys, witnessscript, or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."])
        test_address(self.nodes[1],
                     key.p2pkh_addr,
                     iswatchonly=True,
                     ismine=False,
                     solvable=False,
                     timestamp=timestamp)

        # ScriptPubKey + Private key + internal + Wrong private key
        self.log.info("Should import a scriptPubKey with internal and with a wrong private key as non-solvable")
        key = get_key(self.nodes[0])
        wrong_privkey = get_key(self.nodes[0]).privkey
        self.test_importmulti({"scriptPubKey": key.p2pkh_script,
                               "timestamp": "now",
                               "keys": [wrong_privkey],
                               "internal": True},
                              success=True,
                              warnings=["Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys, witnessscript, or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."])
        test_address(self.nodes[1],
                     key.p2pkh_addr,
                     iswatchonly=True,
                     ismine=False,
                     solvable=False,
                     timestamp=timestamp)

        # Importing existing watch only address with new timestamp should replace saved timestamp.
        assert_greater_than(timestamp, watchonly_timestamp)
        self.log.info("Should replace previously saved watch only timestamp.")
        self.test_importmulti({"scriptPubKey": {"address": watchonly_address},
                               "timestamp": "now"},
                              success=True)
        test_address(self.nodes[1],
                     watchonly_address,
                     iswatchonly=True,
                     ismine=False,
                     timestamp=timestamp)
        watchonly_timestamp = timestamp

        # restart nodes to check for proper serialization/deserialization of watch only address
        self.stop_nodes()
        self.start_nodes()
        test_address(self.nodes[1],
                     watchonly_address,
                     iswatchonly=True,
                     ismine=False,
                     timestamp=watchonly_timestamp)

        # Bad or missing timestamps
        self.log.info("Should throw on invalid or missing timestamp values")
        assert_raises_rpc_error(-3, 'Missing required timestamp field for key',
                                self.nodes[1].importmulti, [{"scriptPubKey": key.p2pkh_script}])
        assert_raises_rpc_error(-3, 'Expected number or "now" timestamp value for key. got type string',
                                self.nodes[1].importmulti, [{
                                    "scriptPubKey": key.p2pkh_script,
                                    "timestamp": ""
                                }])

        # Import P2WPKH address as watch only
        self.log.info("Should import a P2WPKH address as watch only")
        key = get_key(self.nodes[0])
        self.test_importmulti({"scriptPubKey": {"address": key.p2wpkh_addr},
                               "timestamp": "now"},
                              success=True)
        test_address(self.nodes[1],
                     key.p2wpkh_addr,
                     iswatchonly=True,
                     solvable=False)

        # Import P2WPKH address with public key but no private key
        self.log.info("Should import a P2WPKH address and public key as solvable but not spendable")
        key = get_key(self.nodes[0])
        self.test_importmulti({"scriptPubKey": {"address": key.p2wpkh_addr},
                               "timestamp": "now",
                               "pubkeys": [key.pubkey]},
                              success=True,
                              warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."])
        test_address(self.nodes[1],
                     key.p2wpkh_addr,
                     ismine=False,
                     solvable=True)

        # Import P2WPKH address with key and check it is spendable
        self.log.info("Should import a P2WPKH address with key")
        key = get_key(self.nodes[0])
        self.test_importmulti({"scriptPubKey": {"address": key.p2wpkh_addr},
                               "timestamp": "now",
                               "keys": [key.privkey]},
                              success=True)
        test_address(self.nodes[1],
                     key.p2wpkh_addr,
                     iswatchonly=False,
                     ismine=True)

        # P2WSH multisig address without scripts or keys
        multisig = get_multisig(self.nodes[0])
        self.log.info("Should import a p2wsh multisig as watch only without respective redeem script and private keys")
        self.test_importmulti({"scriptPubKey": {"address": multisig.p2wsh_addr},
                               "timestamp": "now"},
                              success=True)
        test_address(self.nodes[1],
                     multisig.p2sh_addr,
                     solvable=False)

        # Same P2WSH multisig address as above, but now with witnessscript + private keys
        self.log.info("Should import a p2wsh with respective witness script and private keys")
        self.test_importmulti({"scriptPubKey": {"address": multisig.p2wsh_addr},
                               "timestamp": "now",
                               "witnessscript": multisig.redeem_script,
                               "keys": multisig.privkeys},
                              success=True)
        test_address(self.nodes[1],
                     multisig.p2sh_addr,
                     solvable=True,
                     ismine=True,
                     sigsrequired=2)

        # P2SH-P2WPKH address with no redeemscript or public or private key
        key = get_key(self.nodes[0])
        self.log.info("Should import a p2sh-p2wpkh without redeem script or keys")
        self.test_importmulti({"scriptPubKey": {"address": key.p2sh_p2wpkh_addr},
                               "timestamp": "now"},
                              success=True)
        test_address(self.nodes[1],
                     key.p2sh_p2wpkh_addr,
                     solvable=False,
                     ismine=False)

        # P2SH-P2WPKH address + redeemscript + public key with no private key
        self.log.info("Should import a p2sh-p2wpkh with respective redeem script and pubkey as solvable")
        self.test_importmulti({"scriptPubKey": {"address": key.p2sh_p2wpkh_addr},
                               "timestamp": "now",
                               "redeemscript": key.p2sh_p2wpkh_redeem_script,
                               "pubkeys": [key.pubkey]},
                              success=True,
                              warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."])
        test_address(self.nodes[1],
                     key.p2sh_p2wpkh_addr,
                     solvable=True,
                     ismine=False)

        # P2SH-P2WPKH address + redeemscript + private key
        key = get_key(self.nodes[0])
        self.log.info("Should import a p2sh-p2wpkh with respective redeem script and private keys")
        self.test_importmulti({"scriptPubKey": {"address": key.p2sh_p2wpkh_addr},
                               "timestamp": "now",
                               "redeemscript": key.p2sh_p2wpkh_redeem_script,
                               "keys": [key.privkey]},
                              success=True)
        test_address(self.nodes[1],
                     key.p2sh_p2wpkh_addr,
                     solvable=True,
                     ismine=True)

        # P2SH-P2WSH multisig + redeemscript with no private key
        multisig = get_multisig(self.nodes[0])
        self.log.info("Should import a p2sh-p2wsh with respective redeem script but no private key")
        self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_p2wsh_addr},
                               "timestamp": "now",
                               "redeemscript": multisig.p2wsh_script,
                               "witnessscript": multisig.redeem_script},
                              success=True,
                              warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."])
        test_address(self.nodes[1],
                     multisig.p2sh_p2wsh_addr,
                     solvable=True,
                     ismine=False)

        # Test importing of a P2SH-P2WPKH address via descriptor + private key
        key = get_key(self.nodes[0])
        self.log.info("Should not import a p2sh-p2wpkh address from descriptor without checksum and private key")
        self.test_importmulti({"desc": "sh(wpkh(" + key.pubkey + "))",
                               "timestamp": "now",
                               "label": "Descriptor import test",
                               "keys": [key.privkey]},
                              success=False,
                              error_code=-5,
                              error_message="Missing checksum")

        # Test importing of a P2SH-P2WPKH address via descriptor + private key
        key = get_key(self.nodes[0])
        self.log.info("Should import a p2sh-p2wpkh address from descriptor and private key")
        self.test_importmulti({"desc": descsum_create("sh(wpkh(" + key.pubkey + "))"),
                               "timestamp": "now",
                               "label": "Descriptor import test",
                               "keys": [key.privkey]},
                              success=True)
        test_address(self.nodes[1],
                     key.p2sh_p2wpkh_addr,
                     solvable=True,
                     ismine=True,
                     label="Descriptor import test")

        # Test ranged descriptor fails if range is not specified
        xpriv = "tprv8ZgxMBicQKsPeuVhWwi6wuMQGfPKi9Li5GtX35jVNknACgqe3CY4g5xgkfDDJcmtF7o1QnxWDRYw4H5P26PXq7sbcUkEqeR4fg3Kxp2tigg"
        addresses = [convert_btc_address_to_qtum("2N7yv4p8G8yEaPddJxY41kPihnWvs39qCMf"), convert_btc_address_to_qtum("2MsHxyb2JS3pAySeNUsJ7mNnurtpeenDzLA")] # hdkeypath=m/0'/0'/0' and 1'
        addresses += [convert_btc_bech32_address_to_qtum("bcrt1qrd3n235cj2czsfmsuvqqpr3lu6lg0ju7scl8gn"), convert_btc_bech32_address_to_qtum("bcrt1qfqeppuvj0ww98r6qghmdkj70tv8qpchehegrg8")] # wpkh subscripts corresponding to the above addresses
        desc = "sh(wpkh(" + xpriv + "/0'/0'/*'" + "))"
        self.log.info("Ranged descriptor import should fail without a specified range")
        self.test_importmulti({"desc": descsum_create(desc),
                               "timestamp": "now"},
                              success=False,
                              error_code=-8,
                              error_message='Descriptor is ranged, please specify the range')

        # Test importing of a ranged descriptor with xpriv
        self.log.info("Should import the ranged descriptor with specified range as solvable")
        self.test_importmulti({"desc": descsum_create(desc),
                               "timestamp": "now",
                               "range": 1},
                              success=True)
        for address in addresses:
            test_address(self.nodes[1],
                         address,
                         solvable=True,
                         ismine=True)

        self.test_importmulti({"desc": descsum_create(desc), "timestamp": "now", "range": -1},
                              success=False, error_code=-8, error_message='End of range is too high')

        self.test_importmulti({"desc": descsum_create(desc), "timestamp": "now", "range": [-1, 10]},
                              success=False, error_code=-8, error_message='Range should be greater or equal than 0')

        self.test_importmulti({"desc": descsum_create(desc), "timestamp": "now", "range": [(2 << 31 + 1) - 1000000, (2 << 31 + 1)]},
                              success=False, error_code=-8, error_message='End of range is too high')

        self.test_importmulti({"desc": descsum_create(desc), "timestamp": "now", "range": [2, 1]},
                              success=False, error_code=-8, error_message='Range specified as [begin,end] must not have begin after end')

        self.test_importmulti({"desc": descsum_create(desc), "timestamp": "now", "range": [0, 1000001]},
                              success=False, error_code=-8, error_message='Range is too large')

        # Test importing a descriptor containing a WIF private key
        wif_priv = "cTe1f5rdT8A8DFgVWTjyPwACsDPJM9ff4QngFxUixCSvvbg1x6sh"
        address = convert_btc_address_to_qtum("2MuhcG52uHPknxDgmGPsV18jSHFBnnRgjPg")
        desc = "sh(wpkh(" + wif_priv + "))"
        self.log.info("Should import a descriptor with a WIF private key as spendable")
        self.test_importmulti({"desc": descsum_create(desc),
                               "timestamp": "now"},
                              success=True)
        test_address(self.nodes[1],
                     address,
                     solvable=True,
                     ismine=True)

        # dump the private key to ensure it matches what was imported
        privkey = self.nodes[1].dumpprivkey(address)
        assert_equal(privkey, wif_priv)

        # Test importing of a P2PKH address via descriptor
        key = get_key(self.nodes[0])
        self.log.info("Should import a p2pkh address from descriptor")
        self.test_importmulti({"desc": descsum_create("pkh(" + key.pubkey + ")"),
                               "timestamp": "now",
                               "label": "Descriptor import test"},
                              True,
                              warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."])
        test_address(self.nodes[1],
                     key.p2pkh_addr,
                     solvable=True,
                     ismine=False,
                     label="Descriptor import test")

        # Test import fails if both desc and scriptPubKey are provided
        key = get_key(self.nodes[0])
        self.log.info("Import should fail if both scriptPubKey and desc are provided")
        self.test_importmulti({"desc": descsum_create("pkh(" + key.pubkey + ")"),
                               "scriptPubKey": {"address": key.p2pkh_addr},
                               "timestamp": "now"},
                              success=False,
                              error_code=-8,
                              error_message='Both a descriptor and a scriptPubKey should not be provided.')

        # Test import fails if neither desc nor scriptPubKey are present
        key = get_key(self.nodes[0])
        self.log.info("Import should fail if neither a descriptor nor a scriptPubKey are provided")
        self.test_importmulti({"timestamp": "now"},
                              success=False,
                              error_code=-8,
                              error_message='Either a descriptor or scriptPubKey must be provided.')

        # Test importing of a multisig via descriptor
        key1 = get_key(self.nodes[0])
        key2 = get_key(self.nodes[0])
        self.log.info("Should import a 1-of-2 bare multisig from descriptor")
        self.test_importmulti({"desc": descsum_create("multi(1," + key1.pubkey + "," + key2.pubkey + ")"),
                               "timestamp": "now"},
                              success=True,
                              warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."])
        self.log.info("Should not treat individual keys from the imported bare multisig as watchonly")
        test_address(self.nodes[1],
                     key1.p2pkh_addr,
                     ismine=False,
                     iswatchonly=False)

        # Import pubkeys with key origin info
        self.log.info("Addresses should have hd keypath and master key id after import with key origin")
        pub_addr = self.nodes[1].getnewaddress()
        pub_addr = self.nodes[1].getnewaddress()
        info = self.nodes[1].getaddressinfo(pub_addr)
        pub = info['pubkey']
        pub_keypath = info['hdkeypath']
        pub_fpr = info['hdmasterfingerprint']
        result = self.nodes[0].importmulti(
            [{
                'desc' : descsum_create("wpkh([" + pub_fpr + pub_keypath[1:] +"]" + pub + ")"),
                "timestamp": "now",
            }]
        )
        assert result[0]['success']
        pub_import_info = self.nodes[0].getaddressinfo(pub_addr)
        assert_equal(pub_import_info['hdmasterfingerprint'], pub_fpr)
        assert_equal(pub_import_info['pubkey'], pub)
        assert_equal(pub_import_info['hdkeypath'], pub_keypath)

        # Import privkeys with key origin info
        priv_addr = self.nodes[1].getnewaddress()
        info = self.nodes[1].getaddressinfo(priv_addr)
        priv = self.nodes[1].dumpprivkey(priv_addr)
        priv_keypath = info['hdkeypath']
        priv_fpr = info['hdmasterfingerprint']
        result = self.nodes[0].importmulti(
            [{
                'desc' : descsum_create("wpkh([" + priv_fpr + priv_keypath[1:] + "]" + priv + ")"),
                "timestamp": "now",
            }]
        )
        assert result[0]['success']
        priv_import_info = self.nodes[0].getaddressinfo(priv_addr)
        assert_equal(priv_import_info['hdmasterfingerprint'], priv_fpr)
        assert_equal(priv_import_info['hdkeypath'], priv_keypath)

        # Make sure the key origin info are still there after a restart
        self.stop_nodes()
        self.start_nodes()
        import_info = self.nodes[0].getaddressinfo(pub_addr)
        assert_equal(import_info['hdmasterfingerprint'], pub_fpr)
        assert_equal(import_info['hdkeypath'], pub_keypath)
        import_info = self.nodes[0].getaddressinfo(priv_addr)
        assert_equal(import_info['hdmasterfingerprint'], priv_fpr)
        assert_equal(import_info['hdkeypath'], priv_keypath)

        # Check legacy import does not import key origin info
        self.log.info("Legacy imports don't have key origin info")
        pub_addr = self.nodes[1].getnewaddress()
        info = self.nodes[1].getaddressinfo(pub_addr)
        pub = info['pubkey']
        result = self.nodes[0].importmulti(
            [{
                'scriptPubKey': {'address': pub_addr},
                'pubkeys': [pub],
                "timestamp": "now",
            }]
        )
        assert result[0]['success']
        pub_import_info = self.nodes[0].getaddressinfo(pub_addr)
        assert_equal(pub_import_info['pubkey'], pub)
        assert 'hdmasterfingerprint' not in pub_import_info
        assert 'hdkeypath' not in pub_import_info

        # Import some public keys to the keypool of a no privkey wallet
        self.log.info("Adding pubkey to keypool of disableprivkey wallet")
        self.nodes[1].createwallet(wallet_name="noprivkeys", disable_private_keys=True)
        wrpc = self.nodes[1].get_wallet_rpc("noprivkeys")

        addr1 = self.nodes[0].getnewaddress()
        addr2 = self.nodes[0].getnewaddress()
        pub1 = self.nodes[0].getaddressinfo(addr1)['pubkey']
        pub2 = self.nodes[0].getaddressinfo(addr2)['pubkey']
        result = wrpc.importmulti(
            [{
                'desc': descsum_create('wpkh(' + pub1 + ')'),
                'keypool': True,
                "timestamp": "now",
            },
            {
                'desc': descsum_create('wpkh(' + pub2 + ')'),
                'keypool': True,
                "timestamp": "now",
            }]
        )
        assert result[0]['success']
        assert result[1]['success']
        assert_equal(wrpc.getwalletinfo()["keypoolsize"], 2)
        newaddr1 = wrpc.getnewaddress()
        assert_equal(addr1, newaddr1)
        newaddr2 = wrpc.getnewaddress()
        assert_equal(addr2, newaddr2)

        # Import some public keys to the internal keypool of a no privkey wallet
        self.log.info("Adding pubkey to internal keypool of disableprivkey wallet")
        addr1 = self.nodes[0].getnewaddress()
        addr2 = self.nodes[0].getnewaddress()
        pub1 = self.nodes[0].getaddressinfo(addr1)['pubkey']
        pub2 = self.nodes[0].getaddressinfo(addr2)['pubkey']
        result = wrpc.importmulti(
            [{
                'desc': descsum_create('wpkh(' + pub1 + ')'),
                'keypool': True,
                'internal': True,
                "timestamp": "now",
            },
            {
                'desc': descsum_create('wpkh(' + pub2 + ')'),
                'keypool': True,
                'internal': True,
                "timestamp": "now",
            }]
        )
        assert result[0]['success']
        assert result[1]['success']
        assert_equal(wrpc.getwalletinfo()["keypoolsize_hd_internal"], 2)
        newaddr1 = wrpc.getrawchangeaddress()
        assert_equal(addr1, newaddr1)
        newaddr2 = wrpc.getrawchangeaddress()
        assert_equal(addr2, newaddr2)

        # Import a multisig and make sure the keys don't go into the keypool
        self.log.info('Imported scripts with pubkeys should not have their pubkeys go into the keypool')
        addr1 = self.nodes[0].getnewaddress()
        addr2 = self.nodes[0].getnewaddress()
        pub1 = self.nodes[0].getaddressinfo(addr1)['pubkey']
        pub2 = self.nodes[0].getaddressinfo(addr2)['pubkey']
        result = wrpc.importmulti(
            [{
                'desc': descsum_create('wsh(multi(2,' + pub1 + ',' + pub2 + '))'),
                'keypool': True,
                "timestamp": "now",
            }]
        )
        assert result[0]['success']
        assert_equal(wrpc.getwalletinfo()["keypoolsize"], 0)

        # Cannot import those pubkeys to keypool of wallet with privkeys
        self.log.info("Pubkeys cannot be added to the keypool of a wallet with private keys")
        wrpc = self.nodes[1].get_wallet_rpc("")
        assert wrpc.getwalletinfo()['private_keys_enabled']
        result = wrpc.importmulti(
            [{
                'desc': descsum_create('wpkh(' + pub1 + ')'),
                'keypool': True,
                "timestamp": "now",
            }]
        )
        assert_equal(result[0]['error']['code'], -8)
        assert_equal(result[0]['error']['message'], "Keys can only be imported to the keypool when private keys are disabled")

        # Make sure ranged imports import keys in order
        self.log.info('Key ranges should be imported in order')
        wrpc = self.nodes[1].get_wallet_rpc("noprivkeys")
        assert_equal(wrpc.getwalletinfo()["keypoolsize"], 0)
        assert_equal(wrpc.getwalletinfo()["private_keys_enabled"], False)
        xpub = "tpubDAXcJ7s7ZwicqjprRaEWdPoHKrCS215qxGYxpusRLLmJuT69ZSicuGdSfyvyKpvUNYBW1s2U3NSrT6vrCYB9e6nZUEvrqnwXPF8ArTCRXMY"
        addresses = [
            'qcrt1qtmp74ayg7p24uslctssvjm06q5phz4yrgnnq8p', # m/0'/0'/0
            'qcrt1q8vprchan07gzagd5e6v9wd7azyucksq2gh4jz2', # m/0'/0'/1
            'qcrt1qtuqdtha7zmqgcrr26n2rqxztv5y8rafj0255t3', # m/0'/0'/2
            'qcrt1qau64272ymawq26t90md6an0ps99qkrse6gsjpz', # m/0'/0'/3
            'qcrt1qsg97266hrh6cpmutqen8s4s962aryy77uwypuz', # m/0'/0'/4
        ]
        result = wrpc.importmulti(
            [{
                'desc': descsum_create('wpkh([80002067/0h/0h]' + xpub + '/*)'),
                'keypool': True,
                'timestamp': 'now',
                'range' : [0, 4],
            }]
        )
        for i in range(0, 5):
            addr = wrpc.getnewaddress('', 'bech32')
            assert_equal(addr, addresses[i])
示例#4
0
    def run_test(self):
        assert_raises_rpc_error(-5, "Missing checksum",
                                self.nodes[0].deriveaddresses, "a")

        descriptor = "wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/0)#t6wfjs64"
        address = convert_btc_bech32_address_to_qtum(
            "bcrt1qjqmxmkpmxt80xz4y3746zgt0q3u3ferr34acd5")
        assert_equal(self.nodes[0].deriveaddresses(descriptor), [address])

        descriptor = descriptor[:-9]
        assert_raises_rpc_error(-5, "Missing checksum",
                                self.nodes[0].deriveaddresses, descriptor)

        descriptor_pubkey = "wpkh(tpubD6NzVbkrYhZ4WaWSyoBvQwbpLkojyoTZPRsgXELWz3Popb3qkjcJyJUGLnL4qHHoQvao8ESaAstxYSnhyswJ76uZPStJRJCTKvosUCJZL5B/1/1/0)#s9ga3alw"
        address = convert_btc_bech32_address_to_qtum(
            "bcrt1qjqmxmkpmxt80xz4y3746zgt0q3u3ferr34acd5")
        assert_equal(self.nodes[0].deriveaddresses(descriptor_pubkey),
                     [address])

        ranged_descriptor = "wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*)#kft60nuy"
        assert_equal(self.nodes[0].deriveaddresses(ranged_descriptor, [1, 2]),
                     [
                         convert_btc_bech32_address_to_qtum(
                             "bcrt1qhku5rq7jz8ulufe2y6fkcpnlvpsta7rq4442dy"),
                         convert_btc_bech32_address_to_qtum(
                             "bcrt1qpgptk2gvshyl0s9lqshsmx932l9ccsv265tvaq")
                     ])
        assert_equal(self.nodes[0].deriveaddresses(ranged_descriptor, 2), [
            address,
            convert_btc_bech32_address_to_qtum(
                "bcrt1qhku5rq7jz8ulufe2y6fkcpnlvpsta7rq4442dy"),
            convert_btc_bech32_address_to_qtum(
                "bcrt1qpgptk2gvshyl0s9lqshsmx932l9ccsv265tvaq")
        ])

        assert_raises_rpc_error(
            -8, "Range should not be specified for an un-ranged descriptor",
            self.nodes[0].deriveaddresses,
            descsum_create(
                "wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/0)"
            ), [0, 2])

        assert_raises_rpc_error(
            -8, "Range must be specified for a ranged descriptor",
            self.nodes[0].deriveaddresses,
            descsum_create(
                "wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*)"
            ))

        assert_raises_rpc_error(
            -8, "End of range is too high", self.nodes[0].deriveaddresses,
            descsum_create(
                "wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*)"
            ), 10000000000)

        assert_raises_rpc_error(
            -8, "Range is too large", self.nodes[0].deriveaddresses,
            descsum_create(
                "wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*)"
            ), [1000000000, 2000000000])

        assert_raises_rpc_error(
            -8, "Range specified as [begin,end] must not have begin after end",
            self.nodes[0].deriveaddresses,
            descsum_create(
                "wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*)"
            ), [2, 0])

        assert_raises_rpc_error(
            -8, "Range should be greater or equal than 0",
            self.nodes[0].deriveaddresses,
            descsum_create(
                "wpkh(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/*)"
            ), [-1, 0])

        combo_descriptor = descsum_create(
            "combo(tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/1/0)"
        )
        assert_equal(self.nodes[0].deriveaddresses(combo_descriptor), [
            convert_btc_address_to_qtum("mtfUoUax9L4tzXARpw1oTGxWyoogp52KhJ"),
            convert_btc_address_to_qtum("mtfUoUax9L4tzXARpw1oTGxWyoogp52KhJ"),
            address,
            convert_btc_address_to_qtum("2NDvEwGfpEqJWfybzpKPHF2XH3jwoQV3D7x")
        ])

        hardened_without_privkey_descriptor = descsum_create(
            "wpkh(tpubD6NzVbkrYhZ4WaWSyoBvQwbpLkojyoTZPRsgXELWz3Popb3qkjcJyJUGLnL4qHHoQvao8ESaAstxYSnhyswJ76uZPStJRJCTKvosUCJZL5B/1'/1/0)"
        )
        assert_raises_rpc_error(-5,
                                "Cannot derive script without private keys",
                                self.nodes[0].deriveaddresses,
                                hardened_without_privkey_descriptor)

        bare_multisig_descriptor = descsum_create(
            "multi(1,tpubD6NzVbkrYhZ4WaWSyoBvQwbpLkojyoTZPRsgXELWz3Popb3qkjcJyJUGLnL4qHHoQvao8ESaAstxYSnhyswJ76uZPStJRJCTKvosUCJZL5B/1/1/0,tpubD6NzVbkrYhZ4WaWSyoBvQwbpLkojyoTZPRsgXELWz3Popb3qkjcJyJUGLnL4qHHoQvao8ESaAstxYSnhyswJ76uZPStJRJCTKvosUCJZL5B/1/1/1)"
        )
        assert_raises_rpc_error(
            -5, "Descriptor does not have a corresponding address",
            self.nodes[0].deriveaddresses, bare_multisig_descriptor)
示例#5
0
    def run_test(self):
        # Create and fund a raw tx for sending 10 BTC
        psbtx1 = self.nodes[0].walletcreatefundedpsbt([], {self.nodes[2].getnewaddress():10})['psbt']

        # Node 1 should not be able to add anything to it but still return the psbtx same as before
        psbtx = self.nodes[1].walletprocesspsbt(psbtx1)['psbt']
        assert_equal(psbtx1, psbtx)

        # Sign the transaction and send
        signed_tx = self.nodes[0].walletprocesspsbt(psbtx)['psbt']
        final_tx = self.nodes[0].finalizepsbt(signed_tx)['hex']
        self.nodes[0].sendrawtransaction(final_tx)

        # Create p2sh, p2wpkh, and p2wsh addresses
        pubkey0 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())['pubkey']
        pubkey1 = self.nodes[1].getaddressinfo(self.nodes[1].getnewaddress())['pubkey']
        pubkey2 = self.nodes[2].getaddressinfo(self.nodes[2].getnewaddress())['pubkey']
        p2sh = self.nodes[1].addmultisigaddress(2, [pubkey0, pubkey1, pubkey2], "", "legacy")['address']
        p2wsh = self.nodes[1].addmultisigaddress(2, [pubkey0, pubkey1, pubkey2], "", "bech32")['address']
        p2sh_p2wsh = self.nodes[1].addmultisigaddress(2, [pubkey0, pubkey1, pubkey2], "", "p2sh-segwit")['address']
        p2wpkh = self.nodes[1].getnewaddress("", "bech32")
        p2pkh = self.nodes[1].getnewaddress("", "legacy")
        p2sh_p2wpkh = self.nodes[1].getnewaddress("", "p2sh-segwit")

        # fund those addresses
        rawtx = self.nodes[0].createrawtransaction([], {p2sh:10, p2wsh:10, p2wpkh:10, p2sh_p2wsh:10, p2sh_p2wpkh:10, p2pkh:10})
        rawtx = self.nodes[0].fundrawtransaction(rawtx, {"changePosition":3})
        signed_tx = self.nodes[0].signrawtransactionwithwallet(rawtx['hex'])['hex']
        txid = self.nodes[0].sendrawtransaction(signed_tx)
        self.nodes[0].generate(6)
        self.sync_all()

        # Find the output pos
        p2sh_pos = -1
        p2wsh_pos = -1
        p2wpkh_pos = -1
        p2pkh_pos = -1
        p2sh_p2wsh_pos = -1
        p2sh_p2wpkh_pos = -1
        decoded = self.nodes[0].decoderawtransaction(signed_tx)
        for out in decoded['vout']:
            if out['scriptPubKey']['addresses'][0] == p2sh:
                p2sh_pos = out['n']
            elif out['scriptPubKey']['addresses'][0] == p2wsh:
                p2wsh_pos = out['n']
            elif out['scriptPubKey']['addresses'][0] == p2wpkh:
                p2wpkh_pos = out['n']
            elif out['scriptPubKey']['addresses'][0] == p2sh_p2wsh:
                p2sh_p2wsh_pos = out['n']
            elif out['scriptPubKey']['addresses'][0] == p2sh_p2wpkh:
                p2sh_p2wpkh_pos = out['n']
            elif out['scriptPubKey']['addresses'][0] == p2pkh:
                p2pkh_pos = out['n']

        # spend single key from node 1
        rawtx = self.nodes[1].walletcreatefundedpsbt([{"txid":txid,"vout":p2wpkh_pos},{"txid":txid,"vout":p2sh_p2wpkh_pos},{"txid":txid,"vout":p2pkh_pos}], {self.nodes[1].getnewaddress():29.99})['psbt']
        walletprocesspsbt_out = self.nodes[1].walletprocesspsbt(rawtx)
        assert_equal(walletprocesspsbt_out['complete'], True)
        self.nodes[1].sendrawtransaction(self.nodes[1].finalizepsbt(walletprocesspsbt_out['psbt'])['hex'])

        # partially sign multisig things with node 1
        psbtx = self.nodes[1].walletcreatefundedpsbt([{"txid":txid,"vout":p2wsh_pos},{"txid":txid,"vout":p2sh_pos},{"txid":txid,"vout":p2sh_p2wsh_pos}], {self.nodes[1].getnewaddress():29.99})['psbt']
        walletprocesspsbt_out = self.nodes[1].walletprocesspsbt(psbtx)
        psbtx = walletprocesspsbt_out['psbt']
        assert_equal(walletprocesspsbt_out['complete'], False)

        # partially sign with node 2. This should be complete and sendable
        walletprocesspsbt_out = self.nodes[2].walletprocesspsbt(psbtx)
        assert_equal(walletprocesspsbt_out['complete'], True)
        self.nodes[2].sendrawtransaction(self.nodes[2].finalizepsbt(walletprocesspsbt_out['psbt'])['hex'])

        # check that walletprocesspsbt fails to decode a non-psbt
        rawtx = self.nodes[1].createrawtransaction([{"txid":txid,"vout":p2wpkh_pos}], {self.nodes[1].getnewaddress():9.99})
        assert_raises_rpc_error(-22, "TX decode failed", self.nodes[1].walletprocesspsbt, rawtx)

        # Convert a non-psbt to psbt and make sure we can decode it
        rawtx = self.nodes[0].createrawtransaction([], {self.nodes[1].getnewaddress():10})
        rawtx = self.nodes[0].fundrawtransaction(rawtx)
        new_psbt = self.nodes[0].converttopsbt(rawtx['hex'])
        self.nodes[0].decodepsbt(new_psbt)

        # Make sure that a non-psbt with signatures cannot be converted
        # Error could be either "TX decode failed" (segwit inputs causes parsing to fail) or "Inputs must not have scriptSigs and scriptWitnesses"
        # We must set iswitness=True because the serialized transaction has inputs and is therefore a witness transaction
        signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx['hex'])
        assert_raises_rpc_error(-22, "", self.nodes[0].converttopsbt, hexstring=signedtx['hex'], iswitness=True)
        assert_raises_rpc_error(-22, "", self.nodes[0].converttopsbt, hexstring=signedtx['hex'], permitsigdata=False, iswitness=True)
        # Unless we allow it to convert and strip signatures
        self.nodes[0].converttopsbt(signedtx['hex'], True)

        # Explicitly allow converting non-empty txs
        new_psbt = self.nodes[0].converttopsbt(rawtx['hex'])
        self.nodes[0].decodepsbt(new_psbt)

        # Create outputs to nodes 1 and 2
        node1_addr = self.nodes[1].getnewaddress()
        node2_addr = self.nodes[2].getnewaddress()
        txid1 = self.nodes[0].sendtoaddress(node1_addr, 13)
        txid2 = self.nodes[0].sendtoaddress(node2_addr, 13)
        blockhash = self.nodes[0].generate(6)[0]
        self.sync_all()
        vout1 = find_output(self.nodes[1], txid1, 13, blockhash=blockhash)
        vout2 = find_output(self.nodes[2], txid2, 13, blockhash=blockhash)

        # Create a psbt spending outputs from nodes 1 and 2
        psbt_orig = self.nodes[0].createpsbt([{"txid":txid1,  "vout":vout1}, {"txid":txid2, "vout":vout2}], {self.nodes[0].getnewaddress():25.999})

        # Update psbts, should only have data for one input and not the other
        psbt1 = self.nodes[1].walletprocesspsbt(psbt_orig)['psbt']
        psbt1_decoded = self.nodes[0].decodepsbt(psbt1)
        assert psbt1_decoded['inputs'][0] and not psbt1_decoded['inputs'][1]
        psbt2 = self.nodes[2].walletprocesspsbt(psbt_orig)['psbt']
        psbt2_decoded = self.nodes[0].decodepsbt(psbt2)
        assert not psbt2_decoded['inputs'][0] and psbt2_decoded['inputs'][1]

        # Combine, finalize, and send the psbts
        combined = self.nodes[0].combinepsbt([psbt1, psbt2])
        finalized = self.nodes[0].finalizepsbt(combined)['hex']
        self.nodes[0].sendrawtransaction(finalized)
        self.nodes[0].generate(6)
        self.sync_all()

        # Test additional args in walletcreatepsbt
        # Make sure both pre-included and funded inputs
        # have the correct sequence numbers based on
        # replaceable arg
        block_height = self.nodes[0].getblockcount()
        unspent = self.nodes[0].listunspent()[0]
        psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}], block_height+2, {"replaceable":True}, False)
        decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"])
        for tx_in, psbt_in in zip(decoded_psbt["tx"]["vin"], decoded_psbt["inputs"]):
           assert_equal(tx_in["sequence"], MAX_BIP125_RBF_SEQUENCE)
           assert "bip32_derivs" not in psbt_in
        assert_equal(decoded_psbt["tx"]["locktime"], block_height+2)

        # Same construction with only locktime set
        psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}], block_height, {}, True)
        decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"])
        for tx_in, psbt_in in zip(decoded_psbt["tx"]["vin"], decoded_psbt["inputs"]):
            assert tx_in["sequence"] > MAX_BIP125_RBF_SEQUENCE
            assert "bip32_derivs" in psbt_in
        assert_equal(decoded_psbt["tx"]["locktime"], block_height)

        # Same construction without optional arguments
        psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}])
        decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"])
        for tx_in in decoded_psbt["tx"]["vin"]:
            assert tx_in["sequence"] > MAX_BIP125_RBF_SEQUENCE
        assert_equal(decoded_psbt["tx"]["locktime"], 0)

        # Make sure change address wallet does not have P2SH innerscript access to results in success
        # when attempting BnB coin selection
        self.nodes[0].walletcreatefundedpsbt([], [{self.nodes[2].getnewaddress():unspent["amount"]+1}], block_height+2, {"changeAddress":self.nodes[1].getnewaddress()}, False)

        # Regression test for 14473 (mishandling of already-signed witness transaction):
        psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}])
        complete_psbt = self.nodes[0].walletprocesspsbt(psbtx_info["psbt"])
        double_processed_psbt = self.nodes[0].walletprocesspsbt(complete_psbt["psbt"])
        assert_equal(complete_psbt, double_processed_psbt)
        # We don't care about the decode result, but decoding must succeed.
        self.nodes[0].decodepsbt(double_processed_psbt["psbt"])

        # BIP 174 Test Vectors

        # Check that unknown values are just passed through
        unknown_psbt = "cHNidP8BAD8CAAAAAf//////////////////////////////////////////AAAAAAD/////AQAAAAAAAAAAA2oBAAAAAAAACg8BAgMEBQYHCAkPAQIDBAUGBwgJCgsMDQ4PAAA="
        unknown_out = self.nodes[0].walletprocesspsbt(unknown_psbt)['psbt']
        assert_equal(unknown_psbt, unknown_out)

        # Open the data file
        with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data/rpc_psbt.json'), encoding='utf-8') as f:
            d = json.load(f)
            invalids = d['invalid']
            valids = d['valid']
            creators = d['creator']
            signers = d['signer']
            combiners = d['combiner']
            finalizers = d['finalizer']
            extractors = d['extractor']

        # Invalid PSBTs
        for invalid in invalids:
            assert_raises_rpc_error(-22, "TX decode failed", self.nodes[0].decodepsbt, invalid)

        # Valid PSBTs
        for valid in valids:
            self.nodes[0].decodepsbt(valid)

        # Creator Tests
        for creator in creators:
            new_outputs = {}
            for k in creator['outputs']:
                new_key = convert_btc_bech32_address_to_qtum(list(k.keys())[0])
                new_value = list(k.values())[0]
                new_outputs[new_key] = new_value
            creator['outputs'] = new_outputs
            created_tx = self.nodes[0].createpsbt(creator['inputs'], creator['outputs'])
            assert_equal(created_tx, creator['result'])

        # Signer tests
        for i, signer in enumerate(signers):
            self.nodes[2].createwallet("wallet{}".format(i))
            wrpc = self.nodes[2].get_wallet_rpc("wallet{}".format(i))
            for key in signer['privkeys']:
                wrpc.importprivkey(key)
            signed_tx = wrpc.walletprocesspsbt(signer['psbt'])['psbt']
            assert_equal(signed_tx, signer['result'])

        # Combiner test
        for combiner in combiners:
            combined = self.nodes[2].combinepsbt(combiner['combine'])
            assert_equal(combined, combiner['result'])

        # Empty combiner test
        assert_raises_rpc_error(-8, "Parameter 'txs' cannot be empty", self.nodes[0].combinepsbt, [])

        # Finalizer test
        for finalizer in finalizers:
            finalized = self.nodes[2].finalizepsbt(finalizer['finalize'], False)['psbt']
            assert_equal(finalized, finalizer['result'])

        # Extractor test
        for extractor in extractors:
            extracted = self.nodes[2].finalizepsbt(extractor['extract'], True)['hex']
            assert_equal(extracted, extractor['result'])

        # Unload extra wallets
        for i, signer in enumerate(signers):
            self.nodes[2].unloadwallet("wallet{}".format(i))

        self.test_utxo_conversion()

        # Test that psbts with p2pkh outputs are created properly
        p2pkh = self.nodes[0].getnewaddress(address_type='legacy')
        psbt = self.nodes[1].walletcreatefundedpsbt([], [{p2pkh : 1}], 0, {"includeWatching" : True}, True)
        self.nodes[0].decodepsbt(psbt['psbt'])

        # Test decoding error: invalid base64
        assert_raises_rpc_error(-22, "TX decode failed invalid base64", self.nodes[0].decodepsbt, ";definitely not base64;")

        # Send to all types of addresses
        addr1 = self.nodes[1].getnewaddress("", "bech32")
        txid1 = self.nodes[0].sendtoaddress(addr1, 11)
        vout1 = find_output(self.nodes[0], txid1, 11)
        addr2 = self.nodes[1].getnewaddress("", "legacy")
        txid2 = self.nodes[0].sendtoaddress(addr2, 11)
        vout2 = find_output(self.nodes[0], txid2, 11)
        addr3 = self.nodes[1].getnewaddress("", "p2sh-segwit")
        txid3 = self.nodes[0].sendtoaddress(addr3, 11)
        vout3 = find_output(self.nodes[0], txid3, 11)
        self.sync_all()

        # Update a PSBT with UTXOs from the node
        # Bech32 inputs should be filled with witness UTXO. Other inputs should not be filled because they are non-witness
        psbt = self.nodes[1].createpsbt([{"txid":txid1, "vout":vout1},{"txid":txid2, "vout":vout2},{"txid":txid3, "vout":vout3}], {self.nodes[0].getnewaddress():32.999})
        decoded = self.nodes[1].decodepsbt(psbt)
        assert "witness_utxo" not in decoded['inputs'][0] and "non_witness_utxo" not in decoded['inputs'][0]
        assert "witness_utxo" not in decoded['inputs'][1] and "non_witness_utxo" not in decoded['inputs'][1]
        assert "witness_utxo" not in decoded['inputs'][2] and "non_witness_utxo" not in decoded['inputs'][2]
        updated = self.nodes[1].utxoupdatepsbt(psbt)
        decoded = self.nodes[1].decodepsbt(updated)
        assert "witness_utxo" in decoded['inputs'][0] and "non_witness_utxo" not in decoded['inputs'][0]
        assert "witness_utxo" not in decoded['inputs'][1] and "non_witness_utxo" not in decoded['inputs'][1]
        assert "witness_utxo" not in decoded['inputs'][2] and "non_witness_utxo" not in decoded['inputs'][2]

        # Two PSBTs with a common input should not be joinable
        psbt1 = self.nodes[1].createpsbt([{"txid":txid1, "vout":vout1}], {self.nodes[0].getnewaddress():Decimal('10.999')})
        assert_raises_rpc_error(-8, "exists in multiple PSBTs", self.nodes[1].joinpsbts, [psbt1, updated])

        # Join two distinct PSBTs
        addr4 = self.nodes[1].getnewaddress("", "p2sh-segwit")
        txid4 = self.nodes[0].sendtoaddress(addr4, 5)
        vout4 = find_output(self.nodes[0], txid4, 5)
        self.nodes[0].generate(6)
        self.sync_all()
        psbt2 = self.nodes[1].createpsbt([{"txid":txid4, "vout":vout4}], {self.nodes[0].getnewaddress():Decimal('4.999')})
        psbt2 = self.nodes[1].walletprocesspsbt(psbt2)['psbt']
        psbt2_decoded = self.nodes[0].decodepsbt(psbt2)
        assert "final_scriptwitness" in psbt2_decoded['inputs'][0] and "final_scriptSig" in psbt2_decoded['inputs'][0]
        joined = self.nodes[0].joinpsbts([psbt, psbt2])
        joined_decoded = self.nodes[0].decodepsbt(joined)
        assert len(joined_decoded['inputs']) == 4 and len(joined_decoded['outputs']) == 2 and "final_scriptwitness" not in joined_decoded['inputs'][3] and "final_scriptSig" not in joined_decoded['inputs'][3]

        # Newly created PSBT needs UTXOs and updating
        addr = self.nodes[1].getnewaddress("", "p2sh-segwit")
        txid = self.nodes[0].sendtoaddress(addr, 7)
        addrinfo = self.nodes[1].getaddressinfo(addr)
        blockhash = self.nodes[0].generate(6)[0]
        self.sync_all()
        vout = find_output(self.nodes[0], txid, 7, blockhash=blockhash)
        psbt = self.nodes[1].createpsbt([{"txid":txid, "vout":vout}], {self.nodes[0].getnewaddress("", "p2sh-segwit"):Decimal('6.999')})
        analyzed = self.nodes[0].analyzepsbt(psbt)
        assert not analyzed['inputs'][0]['has_utxo'] and not analyzed['inputs'][0]['is_final'] and analyzed['inputs'][0]['next'] == 'updater' and analyzed['next'] == 'updater'

        # After update with wallet, only needs signing
        updated = self.nodes[1].walletprocesspsbt(psbt, False, 'ALL', True)['psbt']
        analyzed = self.nodes[0].analyzepsbt(updated)
        assert analyzed['inputs'][0]['has_utxo'] and not analyzed['inputs'][0]['is_final'] and analyzed['inputs'][0]['next'] == 'signer' and analyzed['next'] == 'signer' and analyzed['inputs'][0]['missing']['signatures'][0] == addrinfo['embedded']['witness_program']

        # Check fee and size things
        assert analyzed['fee'] == Decimal('0.001') and analyzed['estimated_vsize'] == 134 and analyzed['estimated_feerate'] == Decimal('0.00746268')

        # After signing and finalizing, needs extracting
        signed = self.nodes[1].walletprocesspsbt(updated)['psbt']
        analyzed = self.nodes[0].analyzepsbt(signed)
        assert analyzed['inputs'][0]['has_utxo'] and analyzed['inputs'][0]['is_final'] and analyzed['next'] == 'extractor'
示例#6
0
    def run_test(self):
        # Create and fund a raw tx for sending 10 BTC
        psbtx1 = self.nodes[0].walletcreatefundedpsbt(
            [], {self.nodes[2].getnewaddress(): 10})['psbt']

        # Node 1 should not be able to add anything to it but still return the psbtx same as before
        psbtx = self.nodes[1].walletprocesspsbt(psbtx1)['psbt']
        assert_equal(psbtx1, psbtx)

        # Sign the transaction and send
        signed_tx = self.nodes[0].walletprocesspsbt(psbtx)['psbt']
        final_tx = self.nodes[0].finalizepsbt(signed_tx)['hex']
        self.nodes[0].sendrawtransaction(final_tx)

        # Create p2sh, p2wpkh, and p2wsh addresses
        pubkey0 = self.nodes[0].getaddressinfo(
            self.nodes[0].getnewaddress())['pubkey']
        pubkey1 = self.nodes[1].getaddressinfo(
            self.nodes[1].getnewaddress())['pubkey']
        pubkey2 = self.nodes[2].getaddressinfo(
            self.nodes[2].getnewaddress())['pubkey']
        p2sh = self.nodes[1].addmultisigaddress(2, [pubkey0, pubkey1, pubkey2],
                                                "", "legacy")['address']
        p2wsh = self.nodes[1].addmultisigaddress(2,
                                                 [pubkey0, pubkey1, pubkey2],
                                                 "", "bech32")['address']
        p2sh_p2wsh = self.nodes[1].addmultisigaddress(
            2, [pubkey0, pubkey1, pubkey2], "", "p2sh-segwit")['address']
        p2wpkh = self.nodes[1].getnewaddress("", "bech32")
        p2pkh = self.nodes[1].getnewaddress("", "legacy")
        p2sh_p2wpkh = self.nodes[1].getnewaddress("", "p2sh-segwit")

        # fund those addresses
        rawtx = self.nodes[0].createrawtransaction(
            [], {
                p2sh: 10,
                p2wsh: 10,
                p2wpkh: 10,
                p2sh_p2wsh: 10,
                p2sh_p2wpkh: 10,
                p2pkh: 10
            })
        rawtx = self.nodes[0].fundrawtransaction(rawtx, {"changePosition": 3})
        signed_tx = self.nodes[0].signrawtransactionwithwallet(
            rawtx['hex'])['hex']
        txid = self.nodes[0].sendrawtransaction(signed_tx)
        self.nodes[0].generate(6)
        self.sync_all()

        # Find the output pos
        p2sh_pos = -1
        p2wsh_pos = -1
        p2wpkh_pos = -1
        p2pkh_pos = -1
        p2sh_p2wsh_pos = -1
        p2sh_p2wpkh_pos = -1
        decoded = self.nodes[0].decoderawtransaction(signed_tx)
        for out in decoded['vout']:
            if out['scriptPubKey']['addresses'][0] == p2sh:
                p2sh_pos = out['n']
            elif out['scriptPubKey']['addresses'][0] == p2wsh:
                p2wsh_pos = out['n']
            elif out['scriptPubKey']['addresses'][0] == p2wpkh:
                p2wpkh_pos = out['n']
            elif out['scriptPubKey']['addresses'][0] == p2sh_p2wsh:
                p2sh_p2wsh_pos = out['n']
            elif out['scriptPubKey']['addresses'][0] == p2sh_p2wpkh:
                p2sh_p2wpkh_pos = out['n']
            elif out['scriptPubKey']['addresses'][0] == p2pkh:
                p2pkh_pos = out['n']

        # spend single key from node 1
        rawtx = self.nodes[1].walletcreatefundedpsbt(
            [{
                "txid": txid,
                "vout": p2wpkh_pos
            }, {
                "txid": txid,
                "vout": p2sh_p2wpkh_pos
            }, {
                "txid": txid,
                "vout": p2pkh_pos
            }], {self.nodes[1].getnewaddress(): 29.99})['psbt']
        walletprocesspsbt_out = self.nodes[1].walletprocesspsbt(rawtx)
        assert_equal(walletprocesspsbt_out['complete'], True)
        self.nodes[1].sendrawtransaction(self.nodes[1].finalizepsbt(
            walletprocesspsbt_out['psbt'])['hex'])

        # partially sign multisig things with node 1
        psbtx = self.nodes[1].walletcreatefundedpsbt(
            [{
                "txid": txid,
                "vout": p2wsh_pos
            }, {
                "txid": txid,
                "vout": p2sh_pos
            }, {
                "txid": txid,
                "vout": p2sh_p2wsh_pos
            }], {self.nodes[1].getnewaddress(): 29.99})['psbt']
        walletprocesspsbt_out = self.nodes[1].walletprocesspsbt(psbtx)
        psbtx = walletprocesspsbt_out['psbt']
        assert_equal(walletprocesspsbt_out['complete'], False)

        # partially sign with node 2. This should be complete and sendable
        walletprocesspsbt_out = self.nodes[2].walletprocesspsbt(psbtx)
        assert_equal(walletprocesspsbt_out['complete'], True)
        self.nodes[2].sendrawtransaction(self.nodes[2].finalizepsbt(
            walletprocesspsbt_out['psbt'])['hex'])

        # check that walletprocesspsbt fails to decode a non-psbt
        rawtx = self.nodes[1].createrawtransaction(
            [{
                "txid": txid,
                "vout": p2wpkh_pos
            }], {self.nodes[1].getnewaddress(): 9.99})
        assert_raises_rpc_error(-22, "TX decode failed",
                                self.nodes[1].walletprocesspsbt, rawtx)

        # Convert a non-psbt to psbt and make sure we can decode it
        rawtx = self.nodes[0].createrawtransaction(
            [], {self.nodes[1].getnewaddress(): 10})
        rawtx = self.nodes[0].fundrawtransaction(rawtx)
        new_psbt = self.nodes[0].converttopsbt(rawtx['hex'])
        self.nodes[0].decodepsbt(new_psbt)

        # Make sure that a psbt with signatures cannot be converted
        signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx['hex'])
        assert_raises_rpc_error(-22, "TX decode failed",
                                self.nodes[0].converttopsbt, signedtx['hex'])
        assert_raises_rpc_error(-22, "TX decode failed",
                                self.nodes[0].converttopsbt, signedtx['hex'],
                                False)
        # Unless we allow it to convert and strip signatures
        self.nodes[0].converttopsbt(signedtx['hex'], True)

        # Explicilty allow converting non-empty txs
        new_psbt = self.nodes[0].converttopsbt(rawtx['hex'])
        self.nodes[0].decodepsbt(new_psbt)

        # Create outputs to nodes 1 and 2
        node1_addr = self.nodes[1].getnewaddress()
        node2_addr = self.nodes[2].getnewaddress()
        txid1 = self.nodes[0].sendtoaddress(node1_addr, 13)
        txid2 = self.nodes[0].sendtoaddress(node2_addr, 13)
        self.nodes[0].generate(6)
        self.sync_all()
        vout1 = find_output(self.nodes[1], txid1, 13)
        vout2 = find_output(self.nodes[2], txid2, 13)

        # Create a psbt spending outputs from nodes 1 and 2
        psbt_orig = self.nodes[0].createpsbt(
            [{
                "txid": txid1,
                "vout": vout1
            }, {
                "txid": txid2,
                "vout": vout2
            }], {self.nodes[0].getnewaddress(): 25.999})

        # Update psbts, should only have data for one input and not the other
        psbt1 = self.nodes[1].walletprocesspsbt(psbt_orig)['psbt']
        psbt1_decoded = self.nodes[0].decodepsbt(psbt1)
        assert psbt1_decoded['inputs'][0] and not psbt1_decoded['inputs'][1]
        psbt2 = self.nodes[2].walletprocesspsbt(psbt_orig)['psbt']
        psbt2_decoded = self.nodes[0].decodepsbt(psbt2)
        assert not psbt2_decoded['inputs'][0] and psbt2_decoded['inputs'][1]

        # Combine, finalize, and send the psbts
        combined = self.nodes[0].combinepsbt([psbt1, psbt2])
        finalized = self.nodes[0].finalizepsbt(combined)['hex']
        self.nodes[0].sendrawtransaction(finalized)
        self.nodes[0].generate(6)
        self.sync_all()

        # Test additional args in walletcreatepsbt
        # Make sure both pre-included and funded inputs
        # have the correct sequence numbers based on
        # replaceable arg
        block_height = self.nodes[0].getblockcount()
        unspent = self.nodes[0].listunspent()[0]
        psbtx_info = self.nodes[0].walletcreatefundedpsbt(
            [{
                "txid": unspent["txid"],
                "vout": unspent["vout"]
            }], [{
                self.nodes[2].getnewaddress(): unspent["amount"] + 1
            }], block_height + 2, {"replaceable": True}, False)
        decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"])
        for tx_in, psbt_in in zip(decoded_psbt["tx"]["vin"],
                                  decoded_psbt["inputs"]):
            assert_equal(tx_in["sequence"], MAX_BIP125_RBF_SEQUENCE)
            assert "bip32_derivs" not in psbt_in
        assert_equal(decoded_psbt["tx"]["locktime"], block_height + 2)

        # Same construction with only locktime set
        psbtx_info = self.nodes[0].walletcreatefundedpsbt(
            [{
                "txid": unspent["txid"],
                "vout": unspent["vout"]
            }], [{
                self.nodes[2].getnewaddress(): unspent["amount"] + 1
            }], block_height, {}, True)
        decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"])
        for tx_in, psbt_in in zip(decoded_psbt["tx"]["vin"],
                                  decoded_psbt["inputs"]):
            assert tx_in["sequence"] > MAX_BIP125_RBF_SEQUENCE
            assert "bip32_derivs" in psbt_in
        assert_equal(decoded_psbt["tx"]["locktime"], block_height)

        # Same construction without optional arguments
        psbtx_info = self.nodes[0].walletcreatefundedpsbt(
            [{
                "txid": unspent["txid"],
                "vout": unspent["vout"]
            }], [{
                self.nodes[2].getnewaddress(): unspent["amount"] + 1
            }])
        decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"])
        for tx_in in decoded_psbt["tx"]["vin"]:
            assert tx_in["sequence"] > MAX_BIP125_RBF_SEQUENCE
        assert_equal(decoded_psbt["tx"]["locktime"], 0)

        # Regression test for 14473 (mishandling of already-signed witness transaction):
        psbtx_info = self.nodes[0].walletcreatefundedpsbt(
            [{
                "txid": unspent["txid"],
                "vout": unspent["vout"]
            }], [{
                self.nodes[2].getnewaddress(): unspent["amount"] + 1
            }])
        complete_psbt = self.nodes[0].walletprocesspsbt(psbtx_info["psbt"])
        double_processed_psbt = self.nodes[0].walletprocesspsbt(
            complete_psbt["psbt"])
        assert_equal(complete_psbt, double_processed_psbt)
        # We don't care about the decode result, but decoding must succeed.
        self.nodes[0].decodepsbt(double_processed_psbt["psbt"])

        # Make sure change address wallet does not have P2SH innerscript access to results in success
        # when attempting BnB coin selection
        self.nodes[0].walletcreatefundedpsbt(
            [], [{
                self.nodes[2].getnewaddress(): unspent["amount"] + 1
            }], block_height + 2,
            {"changeAddress": self.nodes[1].getnewaddress()}, False)

        # BIP 174 Test Vectors

        # Check that unknown values are just passed through
        unknown_psbt = "cHNidP8BAD8CAAAAAf//////////////////////////////////////////AAAAAAD/////AQAAAAAAAAAAA2oBAAAAAAAACg8BAgMEBQYHCAkPAQIDBAUGBwgJCgsMDQ4PAAA="
        unknown_out = self.nodes[0].walletprocesspsbt(unknown_psbt)['psbt']
        assert_equal(unknown_psbt, unknown_out)

        # Open the data file
        with open(os.path.join(os.path.dirname(os.path.realpath(__file__)),
                               'data/rpc_psbt.json'),
                  encoding='utf-8') as f:
            d = json.load(f)
            invalids = d['invalid']
            valids = d['valid']
            creators = d['creator']
            signers = d['signer']
            combiners = d['combiner']
            finalizers = d['finalizer']
            extractors = d['extractor']

        # Invalid PSBTs
        for invalid in invalids:
            assert_raises_rpc_error(-22, "TX decode failed",
                                    self.nodes[0].decodepsbt, invalid)

        # Valid PSBTs
        for valid in valids:
            self.nodes[0].decodepsbt(valid)

        # Creator Tests
        for creator in creators:
            new_outputs = {}
            for k in creator['outputs']:
                new_key = convert_btc_bech32_address_to_qtum(list(k.keys())[0])
                new_value = list(k.values())[0]
                new_outputs[new_key] = new_value
            creator['outputs'] = new_outputs
            created_tx = self.nodes[0].createpsbt(creator['inputs'],
                                                  creator['outputs'])
            assert_equal(created_tx, creator['result'])

        # Signer tests
        for i, signer in enumerate(signers):
            self.nodes[2].createwallet("wallet{}".format(i))
            wrpc = self.nodes[2].get_wallet_rpc("wallet{}".format(i))
            for key in signer['privkeys']:
                wrpc.importprivkey(key)
            signed_tx = wrpc.walletprocesspsbt(signer['psbt'])['psbt']
            assert_equal(signed_tx, signer['result'])

        # Combiner test
        for combiner in combiners:
            combined = self.nodes[2].combinepsbt(combiner['combine'])
            assert_equal(combined, combiner['result'])

        # Finalizer test
        for finalizer in finalizers:
            finalized = self.nodes[2].finalizepsbt(finalizer['finalize'],
                                                   False)['psbt']
            assert_equal(finalized, finalizer['result'])

        # Extractor test
        for extractor in extractors:
            extracted = self.nodes[2].finalizepsbt(extractor['extract'],
                                                   True)['hex']
            assert_equal(extracted, extractor['result'])

        # Unload extra wallets
        for i, signer in enumerate(signers):
            self.nodes[2].unloadwallet("wallet{}".format(i))

        self.test_utxo_conversion()