from test_module import run_exp, multi_exp, update_dict, update_dicts import module_models as models import numpy as np import seaborn as sns sns.set(context="poster", style="ticks", rc={"lines.linewidth": 4}) import matplotlib # ============================================================================= # define exp conditions # ============================================================================= cond1 = [d_il7, d_il2, d_timer] cond_names = ["K", "IL2", "Timer"] time = np.arange(0, 20, 0.01) model = models.th_cell_diff arr = np.arange(1, 2.05, 0.05) cond_list = [update_dicts(cond1, val, "n_div") for val in arr] cond_names2 = ["ndiv" + str(val) for val in arr] # ============================================================================= # run experiment # ============================================================================= exp = multi_exp(time, cond_list, cond_names, cond_names2) norm = matplotlib.colors.Normalize(vmin=np.min(arr), vmax=np.max(arr)) # choose a colormap cm = matplotlib.cm.Blues # create a ScalarMappable and initialize a data structure sm = matplotlib.cm.ScalarMappable(cmap=cm, norm=norm) sm.set_array([])
from test_module import run_exp, multi_exp, update_dict, update_dicts import module_models as models import numpy as np import seaborn as sns sns.set(context="poster", style="ticks", rc={"lines.linewidth": 4}) import matplotlib # ============================================================================= # define exp conditions # ============================================================================= cond1 = [d_il7, d_il2, d_timer] cond_names = ["K", "IL2", "Timer"] time = np.arange(0, 10, 0.01) model = models.th_cell_diff arr = np.arange(1, 2.1, 0.1) cond_list = [update_dicts(cond1, val, "d_eff") for val in arr] cond_names2 = ["d_eff" + str(val) for val in arr] # ============================================================================= # run experiment # ============================================================================= exp = multi_exp(time, cond_list, cond_names, cond_names2) norm = matplotlib.colors.Normalize(vmin=np.min(arr), vmax=np.max(arr)) # choose a colormap cm = matplotlib.cm.Blues # create a ScalarMappable and initialize a data structure sm = matplotlib.cm.ScalarMappable(cmap=cm, norm=norm) sm.set_array([])
import module_models as models import numpy as np import seaborn as sns sns.set(context = "poster", style = "ticks", rc = {"lines.linewidth": 4}) import matplotlib # ============================================================================= # define exp conditions # ============================================================================= cond1 = [d_null, d_il7, d_il2, d_timer] cond_names = ["Null", "K", "IL2", "Timer"] time = np.arange(0,20,0.01) model = models.th_cell_diff arr = np.arange(10,30.5,0.5) cond_list = [update_dicts(cond1, val, "beta_p") for val in arr] cond_names2 = ["betap"+str(val) for val in arr] # ============================================================================= # run experiment # ============================================================================= exp = multi_exp(time, cond_list, cond_names, cond_names2) exp2 = exp.loc[exp["cond2"] == "betap30.0", :] norm = matplotlib.colors.Normalize( vmin=np.min(arr), vmax=np.max(arr)) # choose a colormap cm = matplotlib.cm.Blues
df = fun(arr, pname, guess_arr, cond_list, cond_names) g = sns.relplot(x="x", y="ylog", data=df, hue="model") timer_arr = df.y[df.model == "crit_timer"].array il2_arr = df.y[df.model == "rate_il2"].array il7_arr = df.y[df.model == "rate_il7"].array timer_dicts = [update_dict(d_timer, val, "crit_timer") for val in timer_arr] il2_dicts = [update_dict(d_il2, val, "rate_il2") for val in il2_arr] il7_dicts = [update_dict(d_il7, val, "rate_il7") for val in il7_arr] cond_list = [[d1, d2, d3] for d1, d2, d3 in zip(timer_dicts, il2_dicts, il7_dicts)] cond_list = [ update_dicts(dict_list, val, "beta_p") for dict_list, val in zip(cond_list, arr) ] names = ["crit_timer", "rate_il2", "rate_il7"] cond_names2 = ["betap" + str(val) for val in arr] # ============================================================================= # run experiment # ============================================================================= cond1 = [d_timer, d_il2, d_il7] cond_names = ["Timer", "IL2", "Carr. Cap."] time = np.arange(0, 7, 0.01) exp = multi_exp(time, cond_list, cond_names, cond_names2)