示例#1
0
    algo = MipMRSort

    while options.random_model_type != "default" \
          and options.random_model_type != "choquet":
        print("1. Default MR-Sort model")
        print("2. Choquet MR-Sort model")
        i = raw_input("Type of random model to initialize? ")
        if i == '1':
            options.random_model_type = 'default'
        elif i == '2':
            options.random_model_type = 'choquet'

    random_model_type = options.random_model_type

    options.na = read_multiple_integer(options.na,
                                       "Number of assignment examples")
    options.nc = read_multiple_integer(options.nc, "Number of criteria")
    options.ncat = read_multiple_integer(options.ncat, "Number of categories")
    options.na_gen = read_multiple_integer(options.na_gen, "Number of " \
                                           "generalization alternatives")
    options.pcerrors = read_multiple_integer(options.pcerrors, "Percentage " \
                                             "of errors")
    options.nseeds = read_single_integer(options.nseeds, "Number of seeds")

    dt = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    default_filename = "%s/test_%s-%s.csv" % (DATADIR, algo.__name__, dt)
    options.filename = read_csv_filename(options.filename, default_filename)

    directory = options.filename + "-data"
    if not os.path.exists(directory):
        os.makedirs(directory)
    parser.add_option("-s",
                      "--nseeds",
                      action="store",
                      type="string",
                      dest="nseeds",
                      help="number of seeds")
    parser.add_option("-f",
                      "--filename",
                      action="store",
                      type="string",
                      dest="filename",
                      help="filename to save csv output")

    (options, args) = parser.parse_args()

    options.na = read_multiple_integer(options.na, "Number of " \
                                       "assignment examples")
    options.nc = read_multiple_integer(options.nc, "Number of criteria")
    options.ncat = read_multiple_integer(options.ncat, "Number of " \
                                         "categories")
    options.na_gen = read_multiple_integer(options.na_gen, "Number of " \
                                           "generalization alternatives")
    options.pcerrors = read_multiple_integer(options.pcerrors,
                                             "Ratio of errors")
    options.nseeds = read_single_integer(options.nseeds, "Number of seeds")
    options.ns = read_multiple_integer(options.ns, "Number of function " \
                                       "segments")

    dt = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    default_filename = "%s/test_lp_avfsort-%s.csv" % (DATADIR, dt)
    options.filename = read_csv_filename(options.filename, default_filename)
    parser.add_option("-f",
                      "--filename",
                      action="store",
                      type="string",
                      dest="filename",
                      help="filename to save csv output")
    (options, args) = parser.parse_args()

    while not options.csvfile:
        options.csvfile = raw_input("CSV file containing data ? ")
    data = load_mcda_input_data(options.csvfile)
    if data is None:
        exit(1)

    options.pclearning = read_multiple_integer(options.pclearning,
                                               "Percentage of data to " \
                                               "use in the learning set")
    options.nseeds = read_single_integer(options.nseeds, "Number of seeds")

    dt = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    default_filename = "%s/test_mip_mrsort-%s-%s.csv" \
                       % (DATADIR, data.name, dt)
    options.filename = read_csv_filename(options.filename, default_filename)

    directory = options.filename + "-data"
    if not os.path.exists(directory):
        os.makedirs(directory)

    run_tests(options.nseeds, data, options.pclearning, options.filename)

    print("Results saved in '%s'" % options.filename)
示例#4
0
        print("2. PROPORTIONAL veto")
        i = raw_input("What mode of veto? ")
        if i == '1':
            options.vetom = 'absolute'
        elif i == '2':
            options.vetom = 'proportional'

    vetom = options.vetom
    if vetom == 'absolute':
        veto_func = 1
    elif vetom == 'proportional':
        veto_func = 2

    options.vparam = read_multiple_float(options.vparam,
                                         "Value of the veto param")
    options.na = read_multiple_integer(options.na,
                                       "Number of assignment examples")
    options.nc = read_multiple_integer(options.nc, "Number of criteria")
    options.ncat = read_multiple_integer(options.ncat, "Number of categories")
    options.na_gen = read_multiple_integer(options.na_gen, "Number of " \
                                           "generalization alternatives")
    options.pcerrors = read_multiple_integer(options.pcerrors, "Ratio of " \
                                             "errors")
    options.nseeds = read_single_integer(options.nseeds, "Number of seeds")

    dt = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    default_filename = "%s/test_%s-%s.csv" % (DATADIR, "mip_mrsort_veto", dt)
    options.filename = read_csv_filename(options.filename, default_filename)

    directory = "%s/test_%s-%s" % (DATADIR, "mip_mrsort_veto", dt)
    if not os.path.exists(directory):
        os.makedirs(directory)
                      dest="filename",
                      help="filename to save csv output")
    (options, args) = parser.parse_args()

    while not options.csvfile:
        options.csvfile = raw_input("CSV file containing data ? ")
    data = load_mcda_input_data(options.csvfile)
    if data is None:
        exit(1)

    if options.choquet is True:
        lp_weights = LpMRSortMobius
        heur_profiles = MetaMRSortProfilesChoquet

    options.pclearning = read_multiple_integer(options.pclearning,
                                               "Percentage of data to " \
                                               "use in the learning set")
    options.max_oloops = read_multiple_integer(options.max_oloops, "Max " \
                                               "number of loops for " \
                                               "profiles' metaheuristic")
    options.nmodels = read_multiple_integer(options.nmodels,
                                            "Population size (models)")
    options.max_loops = read_multiple_integer(options.max_loops, "Max " \
                                              "number of loops for the " \
                                              "whole metaheuristic")
    options.nseeds = read_single_integer(options.nseeds, "Number of seeds")

    dt = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    default_filename = "%s/test_meta_mrsort3-%s-%s.csv" \
                       % (DATADIR, data.name, dt)
    options.filename = read_csv_filename(options.filename, default_filename)
示例#6
0
    parser.add_option("-s", "--nseeds", action = "store", type="string",
                      dest = "nseeds",
                      help = "number of seeds")
    parser.add_option("-f", "--filename", action = "store", type="string",
                      dest = "filename",
                      help = "filename to save csv output")
    (options, args) = parser.parse_args()

    while not options.csvfile:
        options.csvfile = raw_input("CSV file containing data ? ")
    data = load_mcda_input_data(options.csvfile)
    if data is None:
        exit(1)

    options.pclearning = read_multiple_integer(options.pclearning,
                                               "Percentage of data to " \
                                               "use in the learning set")
    options.nseeds = read_single_integer(options.nseeds, "Number of seeds")

    dt = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    default_filename = "%s/test_mip_mrsort-%s-%s.csv" \
                       % (DATADIR, data.name, dt)
    options.filename = read_csv_filename(options.filename, default_filename)

    directory = options.filename + "-data"
    if not os.path.exists(directory):
        os.makedirs(directory)

    run_tests(options.nseeds, data, options.pclearning, options.filename)

    print("Results saved in '%s'" % options.filename)
示例#7
0
    parser.add_option("-o", "--max_oloops", action = "store", type="string",
                      dest = "max_oloops",
                      help = "max number of loops for the metaheuristic " \
                             "used to find the profiles")
    parser.add_option("-f",
                      "--filename",
                      action="store",
                      type="string",
                      dest="filename",
                      help="filename to save csv output")

    (options, args) = parser.parse_args()

    algo = MetaMRSortPop3

    options.na = read_multiple_integer(options.na,
                                       "Number of assignment examples")
    options.nc = read_multiple_integer(options.nc, "Number of criteria")
    options.ncat = read_multiple_integer(options.ncat, "Number of categories")
    options.ns = read_multiple_integer(options.ns, "Number of function " \
                                       "segments")
    options.na_gen = read_multiple_integer(options.na_gen, "Number of " \
                                           "generalization alternatives")
    options.pcerrors = read_multiple_integer(options.pcerrors, "Ratio of " \
                                             "errors")
    options.max_oloops = read_multiple_integer(options.max_loops, "Max " \
                                               "number of loops for " \
                                               "profiles' metaheuristic")
    options.nmodels = read_multiple_integer(options.nmodels,
                                            "Population size (models)")
    options.max_loops = read_multiple_integer(options.max_loops, "Max " \
                                              "number of loops for the " \
示例#8
0
    parser.add_option("-s", "--nseeds", action = "store", type="string",
                      dest = "nseeds",
                      help = "number of seeds")
    parser.add_option("-f", "--filename", action = "store", type="string",
                      dest = "filename",
                      help = "filename to save csv output")
    (options, args) = parser.parse_args()

    while not options.csvfile:
        options.csvfile = raw_input("CSV file containing data ? ")
    data = load_mcda_input_data(options.csvfile)
    if data is None:
        exit(1)

    options.pclearning = read_multiple_integer(options.pclearning,
                                               "Percentage of data to " \
                                               "use in the learning set")
    options.ns = read_multiple_integer(options.ns, "Number of function " \
                                       "segments")
    options.nseeds = read_single_integer(options.nseeds, "Number of seeds")

    dt = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    default_filename = "%s/test_lp_avfsort-%s-%s.csv" \
                       % (DATADIR, data.name, dt)
    options.filename = read_csv_filename(options.filename, default_filename)

    directory = options.filename + "-data"
    if not os.path.exists(directory):
        os.makedirs(directory)

    run_tests(options.nseeds, data, options.pclearning, options.ns,
示例#9
0
                      dest = "filename",
                      help = "filename to save csv output")
    (options, args) = parser.parse_args()

    while not options.csvfile:
        options.csvfile = raw_input("CSV file containing data ? ")
    data = load_mcda_input_data(options.csvfile)
    if data is None:
        exit(1)

    if options.choquet is True:
        lp_weights = LpMRSortMobius
        heur_profiles = MetaMRSortProfilesChoquet

    options.pclearning = read_multiple_integer(options.pclearning,
                                               "Percentage of data to " \
                                               "use in the learning set")
    options.max_oloops = read_multiple_integer(options.max_oloops, "Max " \
                                               "number of loops for " \
                                               "profiles' metaheuristic")
    options.nmodels = read_multiple_integer(options.nmodels,
                                            "Population size (models)")
    options.max_loops = read_multiple_integer(options.max_loops, "Max " \
                                              "number of loops for the " \
                                              "whole metaheuristic")
    options.nseeds = read_single_integer(options.nseeds, "Number of seeds")

    dt = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    default_filename = "%s/test_meta_mrsort2-%s-%s.csv" \
                       % (DATADIR, data.name, dt)
    options.filename = read_csv_filename(options.filename, default_filename)
示例#10
0
    parser.add_option("-m", "--nmodels", action = "store", type="string",
                      dest = "nmodels",
                      help = "Size of the population (of models)")
    parser.add_option("-o", "--max_oloops", action = "store", type="string",
                      dest = "max_oloops",
                      help = "max number of loops for the metaheuristic " \
                             "used to find the profiles")
    parser.add_option("-f", "--filename", action = "store", type="string",
                      dest = "filename",
                      help = "filename to save csv output")

    (options, args) = parser.parse_args()

    algo = MetaMRSortPop3

    options.na = read_multiple_integer(options.na,
                                       "Number of assignment examples")
    options.nc = read_multiple_integer(options.nc, "Number of criteria")
    options.ncat = read_multiple_integer(options.ncat, "Number of categories")
    options.ns = read_multiple_integer(options.ns, "Number of function " \
                                       "segments")
    options.na_gen = read_multiple_integer(options.na_gen, "Number of " \
                                           "generalization alternatives")
    options.pcerrors = read_multiple_integer(options.pcerrors, "Ratio of " \
                                             "errors")
    options.max_oloops = read_multiple_integer(options.max_loops, "Max " \
                                               "number of loops for " \
                                               "profiles' metaheuristic")
    options.nmodels = read_multiple_integer(options.nmodels,
                                            "Population size (models)")
    options.max_loops = read_multiple_integer(options.max_loops, "Max " \
                                              "number of loops for the " \
            options.third = True
        elif i == '4':
            options.fourth = True

    i = 0
    if options.third is True:
        algo = MetaMRSortProfiles3
        i += 1
    if options.fourth is True:
        algo = MetaMRSortProfiles4
        i += 1
    if i > 1:
        print("Cannot select multiple algorithms at the same time")
        sys.exit(1)

    options.na = read_multiple_integer(options.na, "Number of " \
                                       "assignment examples")
    options.nc = read_multiple_integer(options.nc, "Number of criteria")
    options.ncat = read_multiple_integer(options.ncat, "Number of " \
                                         "categories")
    options.na_gen = read_multiple_integer(options.na_gen, "Number of " \
                                           "generalization alternatives")
    options.pcerrors = read_multiple_integer(options.pcerrors,
                                             "Ratio of errors")
    options.max_loops = read_multiple_integer(options.max_loops,
                                              "Max number of loops")
    options.nseeds = read_single_integer(options.nseeds, "Number of seeds")

    dt = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    default_filename = "%s/test_%s-%s.csv" \
                       % (DATADIR, algo.__name__, dt)
    options.filename = read_csv_filename(options.filename, default_filename)