def generate_random(self): # Generate random vectors v1 = RandomNumpyVector(self.N) v2 = RandomNumpyVector(self.N) # Generate random matrix A = RandomNumpyMatrix(self.N, self.N) # Return return (v1, v2, A)
def generate_random(self): A = OnlineAffineExpansionStorage(self.Q) for i in range(self.Q): # Generate random matrix A[i] = RandomNumpyMatrix(self.N, self.N) # Genereate random theta theta = RandomTuple(self.Q) # Return return (theta, A)
def generate_random(self): A = OnlineAffineExpansionStorage(self.Q) for i in range(self.Q): # Generate random matrix A[i] = RandomNumpyMatrix(self.Nmax, self.Nmax) # Genereate random theta theta = RandomTuple(self.Q) # Generate N <= Nmax N = randint(1, self.Nmax + 1) # Return return (theta, A, N)
def generate_random(self): A = OnlineAffineExpansionStorage(self.Q) for i in range(self.Q): # Generate random matrix A[i] = RandomNumpyMatrix(self.Nmax, self.Nmax) # Genereate random theta theta = RandomTuple(self.Q) # Generate slice N_stop = RandomSize(1, self.Nmax + 1) N_start = RandomSize(0, N_stop) # Return return (theta, A, slice(N_start, N_stop))
def generate_random(self): aa_product = OnlineAffineExpansionStorage(self.Q, self.Q) aa_product_legacy = legacy_tensor((self.Q, self.Q, self.N, self.N)) for i in range(self.Q): for j in range(self.Q): # Generate random matrix aa_product[i, j] = RandomNumpyMatrix(self.N, self.N) for n in range(self.N): for m in range(self.N): aa_product_legacy[i, j, n, m] = aa_product[i, j][n, m] # Genereate random theta theta = RandomTuple(self.Q) # Generate random solution u = RandomNumpyVector(self.N) v = RandomNumpyVector(self.N) # Return return (theta, aa_product, aa_product_legacy, u, v)
def generate_random(self): aa_product = OnlineAffineExpansionStorage(self.Qa, self.Qa) aa_product_legacy = legacy_tensor((self.Qa, self.Qa, self.N, self.N)) for i in range(self.Qa): for j in range(self.Qa): # Generate random matrix aa_product[i, j] = RandomNumpyMatrix(self.N, self.N) for n in range(self.N): for m in range(self.N): aa_product_legacy[i, j, n, m] = aa_product[i, j][n, m] af_product = OnlineAffineExpansionStorage(self.Qa, self.Qf) af_product_legacy = legacy_tensor((self.Qa, self.Qf, self.N)) for i in range(self.Qa): for j in range(self.Qf): # Generate random matrix af_product[i, j] = RandomNumpyVector(self.N) for n in range(self.N): af_product_legacy[i, j, n] = af_product[i, j][n] ff_product = OnlineAffineExpansionStorage(self.Qf, self.Qf) ff_product_legacy = legacy_tensor((self.Qf, self.Qf)) for i in range(self.Qf): for j in range(self.Qf): # Generate random matrix ff_product[i, j] = RandomNumber() ff_product_legacy[i, j] = ff_product[i, j] # Genereate random theta theta_a = [] theta_f = [] for t in range(self.Ntrain): theta_a.append(RandomTuple(self.Qa)) theta_f.append(RandomTuple(self.Qf)) # Generate random solution u = [] v = [] for t in range(self.Ntrain): u.append(RandomNumpyVector(self.N)) v.append(RandomNumpyVector(self.N)) # Return return (theta_a, theta_f, aa_product, af_product, ff_product, aa_product_legacy, af_product_legacy, ff_product_legacy, u, v)