示例#1
0
def generate_multiple_landmark_annotation_sets(retina_grader=False):
    graders = (UserFactory(), UserFactory(), UserFactory())

    if retina_grader:
        add_to_graders_group(graders)

    landmarksets = (
        LandmarkAnnotationSetFactory(grader=graders[0]),
        LandmarkAnnotationSetFactory(grader=graders[1]),
        LandmarkAnnotationSetFactory(grader=graders[0]),
        LandmarkAnnotationSetFactory(grader=graders[2]),
    )

    # Create child models for landmark annotation set
    singlelandmarkbatches = (
        SingleLandmarkAnnotationFactory.create_batch(
            2, annotation_set=landmarksets[0]),
        SingleLandmarkAnnotationFactory.create_batch(
            5, annotation_set=landmarksets[1]),
        [],
        [],
    )

    images = [
        Image.objects.filter(
            singlelandmarkannotation__annotation_set=landmarksets[0].id),
        Image.objects.filter(
            singlelandmarkannotation__annotation_set=landmarksets[1].id),
        [],
        [],
    ]

    # Create singlelandmarkannotations with the images of landmarkset1
    for image in images[0]:
        singlelandmarkbatches[2].append(
            SingleLandmarkAnnotationFactory.create(
                annotation_set=landmarksets[2], image=image))
        images[2].append(image)

        singlelandmarkbatches[3].append(
            SingleLandmarkAnnotationFactory.create(
                annotation_set=landmarksets[3], image=image))
        images[3].append(image)
    singlelandmarkbatches[2].append(
        SingleLandmarkAnnotationFactory.create(annotation_set=landmarksets[2]))
    images[2].append(singlelandmarkbatches[2][-1].image)

    return MultipleLandmarkAnnotationSets(
        grader1=graders[0],
        grader2=graders[1],
        grader3=graders[2],
        landmarkset1=landmarksets[0],
        landmarkset1images=images[0],
        landmarkset2=landmarksets[1],
        landmarkset2images=images[1],
        landmarkset3=landmarksets[2],
        landmarkset3images=images[2],
        landmarkset4=landmarksets[3],
        landmarkset4images=images[3],
    )
示例#2
0
def generate_multiple_landmark_annotation_sets(retina_grader=False):
    graders = (UserFactory(), UserFactory())

    if retina_grader:
        add_to_graders_group(graders)

    landmarksets = (
        LandmarkAnnotationSetFactory(grader=graders[0]),
        LandmarkAnnotationSetFactory(grader=graders[1]),
        LandmarkAnnotationSetFactory(grader=graders[0]),
    )

    # Create child models for landmark annotation set
    singlelandmarkbatches = (
        SingleLandmarkAnnotationFactory.create_batch(
            2, annotation_set=landmarksets[0]
        ),
        SingleLandmarkAnnotationFactory.create_batch(
            5, annotation_set=landmarksets[1]
        ),
        [],
    )

    images = [
        Image.objects.filter(
            singlelandmarkannotation__annotation_set=landmarksets[0].id
        ),
        Image.objects.filter(
            singlelandmarkannotation__annotation_set=landmarksets[1].id
        ),
        [],
    ]

    # Create singlelandmarkannotations with the images of landmarkset1
    for image in images[0]:
        singlelandmarkbatches[2].append(
            SingleLandmarkAnnotationFactory.create(
                annotation_set=landmarksets[2], image=image
            )
        )
        images[2].append(image)
    singlelandmarkbatches[2].append(
        SingleLandmarkAnnotationFactory.create(annotation_set=landmarksets[2])
    )
    images[2].append(singlelandmarkbatches[2][-1].image)

    return MultipleLandmarkAnnotationSets(
        grader1=graders[0],
        grader2=graders[1],
        landmarkset1=landmarksets[0],
        landmarkset1images=images[0],
        landmarkset2=landmarksets[1],
        landmarkset2images=images[1],
        landmarkset3=landmarksets[2],
        landmarkset3images=images[2],
    )
示例#3
0
 def test_landmarks_single(self):
     u = UserFactory()
     i1 = ImageFactory()
     i2 = ImageFactory()
     las = LandmarkAnnotationSetFactory(grader=u)
     SingleLandmarkAnnotationFactory(annotation_set=las, image=i1)
     SingleLandmarkAnnotationFactory(annotation_set=las, image=i2)
     landmarks = RetinaImageSerializer(i1).data["landmark_annotations"]
     assert len(landmarks) == 1
     assert landmarks == [i2.pk]
示例#4
0
 def test_landmarks_multiple(self):
     u = UserFactory()
     i1 = ImageFactory()
     img_pks = set()
     for _ in range(4):
         img = ImageFactory()
         las = LandmarkAnnotationSetFactory(grader=u)
         SingleLandmarkAnnotationFactory(annotation_set=las, image=img)
         SingleLandmarkAnnotationFactory(annotation_set=las, image=i1)
         img_pks.add(img.pk)
     landmarks = RetinaImageSerializer(i1).data["landmark_annotations"]
     assert len(landmarks) == 4
     assert set(landmarks) == img_pks
示例#5
0
def generate_annotation_set(retina_grader=False):
    grader = UserFactory()

    if retina_grader:
        add_to_graders_group([grader])

    measurement = MeasurementAnnotationFactory(grader=grader)
    boolean = BooleanClassificationAnnotationFactory(grader=grader)
    integer = IntegerClassificationAnnotationFactory(grader=grader)
    polygon = PolygonAnnotationSetFactory(grader=grader)
    coordinatelist = CoordinateListAnnotationFactory(grader=grader)
    landmark = LandmarkAnnotationSetFactory(grader=grader)
    etdrs = ETDRSGridAnnotationFactory(grader=grader)

    # Create child models for polygon annotation set
    SinglePolygonAnnotationFactory.create_batch(10, annotation_set=polygon)

    # Create child models for landmark annotation set (3 per image)
    for i in range(5):
        image = ImageFactory()
        SingleLandmarkAnnotationFactory(annotation_set=landmark, image=image)

    return AnnotationSet(
        grader=grader,
        measurement=measurement,
        boolean=boolean,
        polygon=polygon,
        coordinatelist=coordinatelist,
        landmark=landmark,
        etdrs=etdrs,
        integer=integer,
    )
示例#6
0
def create_load_data(data_type, ds, grader):
    if data_type == "Registration":
        model = LandmarkAnnotationSetFactory(grader=grader)
        SingleLandmarkAnnotationFactory(
            annotation_set=model, image=ds["image_cf"]
        ),
        if ds["archive"].name == "Australia":
            # Australia does not allow obs images so create a new cf image for Australia test
            img = ImageFactory(study=ds["study"])
            SingleLandmarkAnnotationFactory(annotation_set=model, image=img)
        else:
            SingleLandmarkAnnotationFactory(
                annotation_set=model, image=ds["image_obs"]
            ),
    elif data_type == "ETDRS":
        model = ETDRSGridAnnotationFactory(grader=grader, image=ds["image_cf"])
    elif data_type == "GA" or data_type == "kappa":
        model_macualar = PolygonAnnotationSetFactory(
            grader=grader, image=ds["image_cf"], name="macular"
        )
        SinglePolygonAnnotationFactory(annotation_set=model_macualar)
        SinglePolygonAnnotationFactory(annotation_set=model_macualar)
        SinglePolygonAnnotationFactory(annotation_set=model_macualar)

        model_peripapillary = PolygonAnnotationSetFactory(
            grader=grader, image=ds["image_cf"], name="peripapillary"
        )
        SinglePolygonAnnotationFactory(annotation_set=model_peripapillary)
        SinglePolygonAnnotationFactory(annotation_set=model_peripapillary)
        SinglePolygonAnnotationFactory(annotation_set=model_peripapillary)
        model = [model_macualar, model_peripapillary]
    elif data_type == "Measure":
        model = [
            MeasurementAnnotationFactory(grader=grader, image=ds["image_cf"]),
            MeasurementAnnotationFactory(grader=grader, image=ds["image_cf"]),
            MeasurementAnnotationFactory(grader=grader, image=ds["image_cf"]),
        ]
    elif data_type == "Fovea":
        model = BooleanClassificationAnnotationFactory(
            grader=grader, image=ds["image_cf"], name="fovea_affected"
        )

    return model
def generate_annotation_set(retina_grader=False, image=False):
    grader = UserFactory()

    if retina_grader:
        add_to_graders_group([grader])

    create_options = {"grader": grader}
    if image:
        create_options_with_image = {"image": image, **create_options}
    else:
        create_options_with_image = create_options

    measurement = MeasurementAnnotationFactory(**create_options_with_image)
    boolean = BooleanClassificationAnnotationFactory(
        **create_options_with_image
    )
    integer = IntegerClassificationAnnotationFactory(
        **create_options_with_image
    )
    polygon = PolygonAnnotationSetFactory(**create_options_with_image)
    coordinatelist = CoordinateListAnnotationFactory(
        **create_options_with_image
    )
    etdrs = ETDRSGridAnnotationFactory(**create_options_with_image)
    landmark = LandmarkAnnotationSetFactory(**create_options)

    # Create child models for polygon annotation set
    SinglePolygonAnnotationFactory.create_batch(10, annotation_set=polygon)

    # Create child models for landmark annotation set (3 per image)
    single_landmarks = []
    for i in range(5):
        if i > 0 or not image:
            image = ImageFactory()
        single_landmarks.append(
            SingleLandmarkAnnotationFactory(
                annotation_set=landmark, image=image
            )
        )

    return AnnotationSet(
        grader=grader,
        measurement=measurement,
        boolean=boolean,
        polygon=polygon,
        coordinatelist=coordinatelist,
        landmark=landmark,
        singlelandmarks=single_landmarks,
        etdrs=etdrs,
        integer=integer,
    )