import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=1024,
                    FREQ='D',
                    seed=0,
                    trendtype="PolyTrend",
                    cycle_length=0,
                    transform="Quantization",
                    sigma=0.0,
                    exog_count=20,
                    ar_order=0)
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=32,
                    FREQ='D',
                    seed=0,
                    trendtype="Lag1Trend",
                    cycle_length=7,
                    transform="RelativeDifference",
                    sigma=0.0,
                    exog_count=20,
                    ar_order=12)
示例#3
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=128,
                    FREQ='D',
                    seed=0,
                    trendtype="MovingAverage",
                    cycle_length=7,
                    transform="Logit",
                    sigma=0.0,
                    exog_count=100,
                    ar_order=12)
示例#4
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=128,
                    FREQ='D',
                    seed=0,
                    trendtype="MovingMedian",
                    cycle_length=30,
                    transform="BoxCox",
                    sigma=0.0,
                    exog_count=100,
                    ar_order=12)
示例#5
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=32,
                    FREQ='D',
                    seed=0,
                    trendtype="PolyTrend",
                    cycle_length=12,
                    transform="None",
                    sigma=0.0,
                    exog_count=20,
                    ar_order=0)
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=1024,
                    FREQ='D',
                    seed=0,
                    trendtype="LinearTrend",
                    cycle_length=0,
                    transform="Logit",
                    sigma=0.0,
                    exog_count=20,
                    ar_order=12)
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=128,
                    FREQ='D',
                    seed=0,
                    trendtype="LinearTrend",
                    cycle_length=5,
                    transform="None",
                    sigma=0.0,
                    exog_count=0,
                    ar_order=0)
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=1024,
                    FREQ='D',
                    seed=0,
                    trendtype="poly",
                    cycle_length=7,
                    transform="None",
                    sigma=0.0,
                    exog_count=20,
                    ar_order=0)
示例#9
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=1024,
                    FREQ='D',
                    seed=0,
                    trendtype="MovingAverage",
                    cycle_length=5,
                    transform="BoxCox",
                    sigma=0.0,
                    exog_count=0,
                    ar_order=12)
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=32,
                    FREQ='D',
                    seed=0,
                    trendtype="MovingAverage",
                    cycle_length=0,
                    transform="RelativeDifference",
                    sigma=0.0,
                    exog_count=20,
                    ar_order=0)
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=1024,
                    FREQ='D',
                    seed=0,
                    trendtype="constant",
                    cycle_length=30,
                    transform="inv",
                    sigma=0.0,
                    exog_count=20,
                    ar_order=0)
示例#12
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art




art.process_dataset(N = 1024 , FREQ = 'D', seed = 0, trendtype = "LinearTrend", cycle_length = 7, transform = "Anscombe", sigma = 0.0, exog_count = 0, ar_order = 0);
示例#13
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=128,
                    FREQ='D',
                    seed=0,
                    trendtype="MovingAverage",
                    cycle_length=30,
                    transform="Quantization",
                    sigma=0.0,
                    exog_count=0,
                    ar_order=0)
示例#14
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art




art.process_dataset(N = 32 , FREQ = 'D', seed = 0, trendtype = "MovingAverage", cycle_length = 12, transform = "Fisher", sigma = 0.0, exog_count = 100, ar_order = 12);
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=128,
                    FREQ='D',
                    seed=0,
                    trendtype="PolyTrend",
                    cycle_length=0,
                    transform="RelativeDifference",
                    sigma=0.0,
                    exog_count=0,
                    ar_order=0)
示例#16
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=32,
                    FREQ='D',
                    seed=0,
                    trendtype="MovingMedian",
                    cycle_length=7,
                    transform="None",
                    sigma=0.0,
                    exog_count=100,
                    ar_order=0)
示例#17
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art




art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "MovingMedian", cycle_length = 30, transform = "Anscombe", sigma = 0.0, exog_count = 0, ar_order = 0);
示例#18
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=1024,
                    FREQ='D',
                    seed=0,
                    trendtype="Lag1Trend",
                    cycle_length=30,
                    transform="BoxCox",
                    sigma=0.0,
                    exog_count=20,
                    ar_order=0)
示例#19
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=32,
                    FREQ='D',
                    seed=0,
                    trendtype="ConstantTrend",
                    cycle_length=12,
                    transform="BoxCox",
                    sigma=0.0,
                    exog_count=0,
                    ar_order=0)
示例#20
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art




art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "Lag1Trend", cycle_length = 12, transform = "Integration", sigma = 0.0, exog_count = 100, ar_order = 0);
示例#21
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=32,
                    FREQ='D',
                    seed=0,
                    trendtype="Lag1Trend",
                    cycle_length=30,
                    transform="Anscombe",
                    sigma=0.0,
                    exog_count=100,
                    ar_order=0)
示例#22
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=128,
                    FREQ='D',
                    seed=0,
                    trendtype="ConstantTrend",
                    cycle_length=0,
                    transform="Difference",
                    sigma=0.0,
                    exog_count=100,
                    ar_order=0)
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=1024,
                    FREQ='D',
                    seed=0,
                    trendtype="MovingMedian",
                    cycle_length=5,
                    transform="RelativeDifference",
                    sigma=0.0,
                    exog_count=0,
                    ar_order=0)
示例#24
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=128,
                    FREQ='D',
                    seed=0,
                    trendtype="MovingMedian",
                    cycle_length=7,
                    transform="Quantization",
                    sigma=0.0,
                    exog_count=20,
                    ar_order=12)
示例#25
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art




art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "MovingAverage", cycle_length = 7, transform = "Integration", sigma = 0.0, exog_count = 20, ar_order = 0);
示例#26
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art




art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "PolyTrend", cycle_length = 5, transform = "BoxCox", sigma = 0.0, exog_count = 0, ar_order = 0);
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=128,
                    FREQ='D',
                    seed=0,
                    trendtype="PolyTrend",
                    cycle_length=30,
                    transform="Integration",
                    sigma=0.0,
                    exog_count=0,
                    ar_order=12)
示例#28
0
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=128,
                    FREQ='D',
                    seed=0,
                    trendtype="Lag1Trend",
                    cycle_length=7,
                    transform="Fisher",
                    sigma=0.0,
                    exog_count=100,
                    ar_order=12)
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=32,
                    FREQ='D',
                    seed=0,
                    trendtype="ConstantTrend",
                    cycle_length=0,
                    transform="Integration",
                    sigma=0.0,
                    exog_count=100,
                    ar_order=0)
import pyaf.Bench.TS_datasets as tsds
import tests.artificial.process_artificial_dataset as art

art.process_dataset(N=32,
                    FREQ='D',
                    seed=0,
                    trendtype="LinearTrend",
                    cycle_length=5,
                    transform="Quantization",
                    sigma=0.0,
                    exog_count=20,
                    ar_order=12)