import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=1024, FREQ='D', seed=0, trendtype="PolyTrend", cycle_length=0, transform="Quantization", sigma=0.0, exog_count=20, ar_order=0)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=32, FREQ='D', seed=0, trendtype="Lag1Trend", cycle_length=7, transform="RelativeDifference", sigma=0.0, exog_count=20, ar_order=12)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=128, FREQ='D', seed=0, trendtype="MovingAverage", cycle_length=7, transform="Logit", sigma=0.0, exog_count=100, ar_order=12)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=128, FREQ='D', seed=0, trendtype="MovingMedian", cycle_length=30, transform="BoxCox", sigma=0.0, exog_count=100, ar_order=12)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=32, FREQ='D', seed=0, trendtype="PolyTrend", cycle_length=12, transform="None", sigma=0.0, exog_count=20, ar_order=0)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=1024, FREQ='D', seed=0, trendtype="LinearTrend", cycle_length=0, transform="Logit", sigma=0.0, exog_count=20, ar_order=12)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=128, FREQ='D', seed=0, trendtype="LinearTrend", cycle_length=5, transform="None", sigma=0.0, exog_count=0, ar_order=0)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=1024, FREQ='D', seed=0, trendtype="poly", cycle_length=7, transform="None", sigma=0.0, exog_count=20, ar_order=0)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=1024, FREQ='D', seed=0, trendtype="MovingAverage", cycle_length=5, transform="BoxCox", sigma=0.0, exog_count=0, ar_order=12)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=32, FREQ='D', seed=0, trendtype="MovingAverage", cycle_length=0, transform="RelativeDifference", sigma=0.0, exog_count=20, ar_order=0)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=1024, FREQ='D', seed=0, trendtype="constant", cycle_length=30, transform="inv", sigma=0.0, exog_count=20, ar_order=0)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 1024 , FREQ = 'D', seed = 0, trendtype = "LinearTrend", cycle_length = 7, transform = "Anscombe", sigma = 0.0, exog_count = 0, ar_order = 0);
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=128, FREQ='D', seed=0, trendtype="MovingAverage", cycle_length=30, transform="Quantization", sigma=0.0, exog_count=0, ar_order=0)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 32 , FREQ = 'D', seed = 0, trendtype = "MovingAverage", cycle_length = 12, transform = "Fisher", sigma = 0.0, exog_count = 100, ar_order = 12);
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=128, FREQ='D', seed=0, trendtype="PolyTrend", cycle_length=0, transform="RelativeDifference", sigma=0.0, exog_count=0, ar_order=0)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=32, FREQ='D', seed=0, trendtype="MovingMedian", cycle_length=7, transform="None", sigma=0.0, exog_count=100, ar_order=0)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "MovingMedian", cycle_length = 30, transform = "Anscombe", sigma = 0.0, exog_count = 0, ar_order = 0);
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=1024, FREQ='D', seed=0, trendtype="Lag1Trend", cycle_length=30, transform="BoxCox", sigma=0.0, exog_count=20, ar_order=0)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=32, FREQ='D', seed=0, trendtype="ConstantTrend", cycle_length=12, transform="BoxCox", sigma=0.0, exog_count=0, ar_order=0)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "Lag1Trend", cycle_length = 12, transform = "Integration", sigma = 0.0, exog_count = 100, ar_order = 0);
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=32, FREQ='D', seed=0, trendtype="Lag1Trend", cycle_length=30, transform="Anscombe", sigma=0.0, exog_count=100, ar_order=0)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=128, FREQ='D', seed=0, trendtype="ConstantTrend", cycle_length=0, transform="Difference", sigma=0.0, exog_count=100, ar_order=0)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=1024, FREQ='D', seed=0, trendtype="MovingMedian", cycle_length=5, transform="RelativeDifference", sigma=0.0, exog_count=0, ar_order=0)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=128, FREQ='D', seed=0, trendtype="MovingMedian", cycle_length=7, transform="Quantization", sigma=0.0, exog_count=20, ar_order=12)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "MovingAverage", cycle_length = 7, transform = "Integration", sigma = 0.0, exog_count = 20, ar_order = 0);
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N = 128 , FREQ = 'D', seed = 0, trendtype = "PolyTrend", cycle_length = 5, transform = "BoxCox", sigma = 0.0, exog_count = 0, ar_order = 0);
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=128, FREQ='D', seed=0, trendtype="PolyTrend", cycle_length=30, transform="Integration", sigma=0.0, exog_count=0, ar_order=12)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=128, FREQ='D', seed=0, trendtype="Lag1Trend", cycle_length=7, transform="Fisher", sigma=0.0, exog_count=100, ar_order=12)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=32, FREQ='D', seed=0, trendtype="ConstantTrend", cycle_length=0, transform="Integration", sigma=0.0, exog_count=100, ar_order=0)
import pyaf.Bench.TS_datasets as tsds import tests.artificial.process_artificial_dataset as art art.process_dataset(N=32, FREQ='D', seed=0, trendtype="LinearTrend", cycle_length=5, transform="Quantization", sigma=0.0, exog_count=20, ar_order=12)