def test_text_regressor(tmp_dir): (train_x, train_y), (test_x, test_y) = common.imdb_raw() train_y = common.generate_data(num_instances=train_y.shape[0], shape=(1, )) test_y = common.generate_data(num_instances=test_y.shape[0], shape=(1, )) clf = ak.TextRegressor(directory=tmp_dir, max_trials=2, seed=common.SEED) clf.fit(train_x, train_y, epochs=1, validation_data=(test_x, test_y)) assert clf.predict(test_x).shape == (len(test_x), 1)
def test_io_api(tmp_dir): (image_x, train_y), (test_x, test_y) = mnist.load_data() (text_x, train_y), (test_x, test_y) = common.imdb_raw() num_instances = 20 image_x = image_x[:num_instances] text_x = text_x[:num_instances] structured_data_x = common.generate_structured_data( num_instances=num_instances) classification_y = common.generate_one_hot_labels( num_instances=num_instances, num_classes=3) regression_y = common.generate_data(num_instances=num_instances, shape=(1, )) # Build model and train. automodel = ak.AutoModel( inputs=[ak.ImageInput(), ak.TextInput(), ak.StructuredDataInput()], outputs=[ ak.RegressionHead(metrics=['mae']), ak.ClassificationHead(loss='categorical_crossentropy', metrics=['accuracy']) ], directory=tmp_dir, max_trials=2, seed=common.SEED) automodel.fit([image_x, text_x, structured_data_x], [regression_y, classification_y], epochs=2, validation_split=0.2)
def test_functional_api(tmp_dir): # Prepare the data. num_instances = 20 (image_x, train_y), (test_x, test_y) = mnist.load_data() (text_x, train_y), (test_x, test_y) = common.imdb_raw() (structured_data_x, train_y), (test_x, test_y) = common.dataframe_numpy() image_x = image_x[:num_instances] text_x = text_x[:num_instances] structured_data_x = structured_data_x[:num_instances] classification_y = common.generate_one_hot_labels( num_instances=num_instances, num_classes=3) regression_y = common.generate_data(num_instances=num_instances, shape=(1, )) # Build model and train. image_input = ak.ImageInput() output = ak.Normalization()(image_input) output = ak.ImageAugmentation()(output) outputs1 = ak.ResNetBlock(version='next')(image_input) outputs2 = ak.XceptionBlock()(image_input) image_output = ak.Merge()((outputs1, outputs2)) structured_data_input = ak.StructuredDataInput( column_names=common.COLUMN_NAMES_FROM_CSV, column_types=common.COLUMN_TYPES_FROM_CSV) structured_data_output = ak.FeatureEngineering()(structured_data_input) structured_data_output = ak.DenseBlock()(structured_data_output) text_input = ak.TextInput() outputs1 = ak.TextToIntSequence()(text_input) outputs1 = ak.EmbeddingBlock()(outputs1) outputs1 = ak.ConvBlock(separable=True)(outputs1) outputs1 = ak.SpatialReduction()(outputs1) outputs2 = ak.TextToNgramVector()(text_input) outputs2 = ak.DenseBlock()(outputs2) text_output = ak.Merge()((outputs1, outputs2)) merged_outputs = ak.Merge()( (structured_data_output, image_output, text_output)) regression_outputs = ak.RegressionHead()(merged_outputs) classification_outputs = ak.ClassificationHead()(merged_outputs) automodel = ak.GraphAutoModel( inputs=[image_input, text_input, structured_data_input], directory=tmp_dir, outputs=[regression_outputs, classification_outputs], max_trials=2, seed=common.SEED) automodel.fit((image_x, text_x, structured_data_x), (regression_y, classification_y), validation_split=0.2, epochs=2)
def test_text_classifier(tmp_dir): (train_x, train_y), (test_x, test_y) = common.imdb_raw() clf = ak.TextClassifier(directory=tmp_dir, max_trials=2, seed=common.SEED) clf.fit(train_x, train_y, epochs=1, validation_data=(test_x, test_y)) assert clf.predict(test_x).shape == (len(test_x), 1)