示例#1
0
def test_payoff_table():
    payoff = Helper.read_excel(xlsx, "payoff_table").to_numpy()
    assert Helper.array_equal(py_augmecon.model.payoff, payoff, 2)
示例#2
0
def test_pareto_sols():
    pareto_sols = Helper.read_excel(xlsx, "pareto_sols").to_numpy()
    assert Helper.array_equal(py_augmecon.unique_pareto_sols, pareto_sols, 2)
def unit_commitment_model():
    model = ConcreteModel()

    # Define input files
    xlsx = pd.ExcelFile(
        f"{Path(__file__).parent.absolute()}/input/unit_commitment.xlsx",
        engine="openpyxl",
    )
    system_demand = Helper.read_excel(xlsx, "SystemDemand")
    storage_systems = Helper.read_excel(xlsx, "StorageSystems")
    generators = Helper.read_excel(xlsx, "Generators")
    generator_step_size = Helper.read_excel(xlsx, "GeneratorStepSize")
    generator_step_cost = Helper.read_excel(xlsx, "GeneratorStepCost")
    pv_generation = Helper.read_excel(xlsx, "PVGeneration")

    # Define sets
    model.T = Set(ordered=True, initialize=system_demand.index)
    model.I = Set(ordered=True, initialize=generators.index)
    model.F = Set(ordered=True, initialize=generator_step_size.columns)
    model.S = Set(ordered=True, initialize=storage_systems.index)

    # Define parameters
    model.Pmax = Param(model.I, within=NonNegativeReals, mutable=True)
    model.Pmin = Param(model.I, within=NonNegativeReals, mutable=True)

    model.RU = Param(model.I, within=NonNegativeReals, mutable=True)
    model.RD = Param(model.I, within=NonNegativeReals, mutable=True)
    model.SUC = Param(model.I, within=NonNegativeReals, mutable=True)
    model.SDC = Param(model.I, within=NonNegativeReals, mutable=True)
    model.Pini = Param(model.I, within=NonNegativeReals, mutable=True)
    model.uini = Param(model.I, within=Binary, mutable=True)
    model.C = Param(model.I, model.F, within=NonNegativeReals, mutable=True)
    model.B = Param(model.I, model.F, within=NonNegativeReals, mutable=True)
    model.SystemDemand = Param(model.T, within=NonNegativeReals, mutable=True)
    model.Emissions = Param(model.I, within=NonNegativeReals, mutable=True)

    model.PV = Param(model.T, within=NonNegativeReals, mutable=True)

    model.ESS_Pmax = Param(model.S, within=NonNegativeReals, mutable=True)
    model.ESS_SOEmax = Param(model.S, within=NonNegativeReals, mutable=True)
    model.ESS_SOEini = Param(model.S, within=NonNegativeReals, mutable=True)
    model.ESS_Eff = Param(model.S, within=NonNegativeReals, mutable=True)

    # Give values to parameters of the generators
    for i in model.I:
        model.Pmin[i] = generators.loc[i, "Pmin"]
        model.Pmax[i] = generators.loc[i, "Pmax"]
        model.RU[i] = generators.loc[i, "RU"]
        model.RD[i] = generators.loc[i, "RD"]
        model.SUC[i] = generators.loc[i, "SUC"]
        model.SDC[i] = generators.loc[i, "SDC"]
        model.Pini[i] = generators.loc[i, "Pini"]
        model.uini[i] = generators.loc[i, "uini"]
        model.Emissions[i] = generators.loc[i, "Emissions"]
        for f in model.F:
            model.B[i, f] = generator_step_size.loc[i, f]
            model.C[i, f] = generator_step_cost.loc[i, f]

    # Add system demand and PV generation
    for t in model.T:
        model.SystemDemand[t] = system_demand.loc[t, "SystemDemand"]
        model.PV[t] = pv_generation.loc[t, "PVGeneration"]

    # Give values to ESS parameters
    for s in model.S:
        model.ESS_Pmax[s] = storage_systems.loc[s, "Power"]
        model.ESS_SOEmax[s] = storage_systems.loc[s, "Energy"]
        model.ESS_SOEini[s] = storage_systems.loc[s, "SOEini"]
        model.ESS_Eff[s] = storage_systems.loc[s, "Eff"]

    # Define decision variables
    model.P = Var(model.I, model.T, within=NonNegativeReals)
    model.Pres = Var(model.T, within=NonNegativeReals)
    model.b = Var(model.I, model.F, model.T, within=NonNegativeReals)
    model.u = Var(model.I, model.T, within=Binary)
    model.CSU = Var(model.I, model.T, within=NonNegativeReals)
    model.CSD = Var(model.I, model.T, within=NonNegativeReals)

    model.SOE = Var(model.S, model.T, within=NonNegativeReals)
    model.Pch = Var(model.S, model.T, within=NonNegativeReals)
    model.Pdis = Var(model.S, model.T, within=NonNegativeReals)
    model.u_ess = Var(model.S, model.T, within=Binary)

    # --------------------------------------
    #   Define the objective functions
    # --------------------------------------

    def cost_objective(model):
        return sum(
            sum(
                sum(model.C[i, f] * model.b[i, f, t]
                    for f in model.F) + model.CSU[i, t] + model.CSD[i, t]
                for i in model.I) for t in model.T)

    def emissions_objective(model):
        return sum(
            sum(model.P[i, t] * model.Emissions[i] for i in model.I)
            for t in model.T)

    def unmet_objective(model):
        return sum(model.Pres[t] for t in model.T)

    # --------------------------------------
    #   Define the regular constraints
    # --------------------------------------

    def power_decomposition_rule1(model, i, t):
        return model.P[i, t] == sum(model.b[i, f, t] for f in model.F)

    def power_decomposition_rule2(model, i, f, t):
        return model.b[i, f, t] <= model.B[i, f]

    def power_min_rule(model, i, t):
        return model.P[i, t] >= model.Pmin[i] * model.u[i, t]

    def power_max_rule(model, i, t):
        return model.P[i, t] <= model.Pmax[i] * model.u[i, t]

    def ramp_up_rule(model, i, t):
        if model.T.ord(t) == 1:
            return model.P[i, t] - model.Pini[i] <= 60 * model.RU[i]

        if model.T.ord(t) > 1:
            return model.P[i, t] - model.P[i,
                                           model.T.prev(t)] <= 60 * model.RU[i]

    def ramp_down_rule(model, i, t):
        if model.T.ord(t) == 1:
            return (model.Pini[i] - model.P[i, t]) <= 60 * model.RD[i]

        if model.T.ord(t) > 1:
            return (model.P[i, model.T.prev(t)] -
                    model.P[i, t]) <= 60 * model.RD[i]

    def start_up_cost(model, i, t):
        if model.T.ord(t) == 1:
            return model.CSU[i, t] >= model.SUC[i] * (model.u[i, t] -
                                                      model.uini[i])

        if model.T.ord(t) > 1:
            return model.CSU[i, t] >= model.SUC[i] * (
                model.u[i, t] - model.u[i, model.T.prev(t)])

    def shut_down_cost(model, i, t):
        if model.T.ord(t) == 1:
            return model.CSD[i, t] >= model.SDC[i] * (model.uini[i] -
                                                      model.u[i, t])

        if model.T.ord(t) > 1:
            return model.CSD[i, t] >= model.SDC[i] * (
                model.u[i, model.T.prev(t)] - model.u[i, t])

    def ESS_SOEupdate(model, s, t):
        if model.T.ord(t) == 1:
            return (model.SOE[s, t] == model.ESS_SOEini[s] +
                    model.ESS_Eff[s] * model.Pch[s, t] -
                    model.Pdis[s, t] / model.ESS_Eff[s])

        if model.T.ord(t) > 1:
            return (model.SOE[s, t] == model.SOE[s, model.T.prev(t)] +
                    model.ESS_Eff[s] * model.Pch[s, t] -
                    model.Pdis[s, t] / model.ESS_Eff[s])

    def ESS_SOElimit(model, s, t):
        return model.SOE[s, t] <= model.ESS_SOEmax[s]

    def ESS_Charging(model, s, t):
        return model.Pch[s, t] <= model.ESS_Pmax[s] * model.u_ess[s, t]

    def ESS_Discharging(model, s, t):
        return model.Pdis[s, t] <= model.ESS_Pmax[s] * (1 - model.u_ess[s, t])

    def Balance(model, t):
        return model.PV[t] + sum(model.P[i, t] for i in model.I) + sum(
            model.Pdis[s, t]
            for s in model.S) == model.SystemDemand[t] - model.Pres[t] + sum(
                model.Pch[s, t] for s in model.S)

    def Pres_max(model, t):
        return model.Pres[t] <= 0.1 * model.SystemDemand[t]

    # --------------------------------------
    #   Add components to the model
    # --------------------------------------

    # Add the constraints to the model
    model.power_decomposition_rule1 = Constraint(
        model.I, model.T, rule=power_decomposition_rule1)
    model.power_decomposition_rule2 = Constraint(
        model.I, model.F, model.T, rule=power_decomposition_rule2)
    model.power_min_rule = Constraint(model.I, model.T, rule=power_min_rule)
    model.power_max_rule = Constraint(model.I, model.T, rule=power_max_rule)
    model.start_up_cost = Constraint(model.I, model.T, rule=start_up_cost)
    model.shut_down_cost = Constraint(model.I, model.T, rule=shut_down_cost)
    model.ConSOEUpdate = Constraint(model.S, model.T, rule=ESS_SOEupdate)
    model.ConCharging = Constraint(model.S, model.T, rule=ESS_Charging)
    model.ConDischarging = Constraint(model.S, model.T, rule=ESS_Discharging)
    model.ConSOElimit = Constraint(model.S, model.T, rule=ESS_SOElimit)
    model.ConGenUp = Constraint(model.I, model.T, rule=ramp_up_rule)
    model.ConGenDown = Constraint(model.I, model.T, rule=ramp_down_rule)
    model.ConBalance = Constraint(model.T, rule=Balance)
    model.Pres_max = Constraint(model.T, rule=Pres_max)

    # Add the objective functions to the model using ObjectiveList(). Note
    # that the first index is 1 instead of 0!
    model.obj_list = ObjectiveList()
    model.obj_list.add(expr=cost_objective(model), sense=minimize)
    model.obj_list.add(expr=emissions_objective(model), sense=minimize)
    model.obj_list.add(expr=unmet_objective(model), sense=minimize)

    # By default deactivate all the objective functions
    for o in range(len(model.obj_list)):
        model.obj_list[o + 1].deactivate()

    return model