def run_model_test_without_loggers(trainer_options: dict, model: LightningModule, data: LightningDataModule = None, min_acc: float = 0.50): reset_seed() # fit model trainer = Trainer(**trainer_options) trainer.fit(model, datamodule=data) # correct result and ok accuracy assert trainer.state.finished, f"Training failed with {trainer.state}" model2 = load_model_from_checkpoint( trainer.logger, trainer.checkpoint_callback.best_model_path, type(model)) # test new model accuracy test_loaders = model2.test_dataloader( ) if not data else data.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] if not isinstance(model2, BoringModel): for dataloader in test_loaders: run_prediction_eval_model_template(model2, dataloader, min_acc=min_acc)
def run_model_test_without_loggers(trainer_options, model, min_acc: float = 0.50): reset_seed() # fit model trainer = Trainer(**trainer_options) trainer.fit(model) # correct result and ok accuracy assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}" pretrained_model = load_model_from_checkpoint( trainer.logger, trainer.checkpoint_callback.best_model_path, type(model)) # test new model accuracy test_loaders = model.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] for dataloader in test_loaders: run_prediction(pretrained_model, dataloader, min_acc=min_acc) if trainer._distrib_type in (DistributedType.DDP, DistributedType.DDP_SPAWN): # on hpc this would work fine... but need to hack it for the purpose of the test trainer.model = pretrained_model trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers( )
def run_model_test( trainer_options, model: LightningModule, data: LightningDataModule = None, on_gpu: bool = True, version=None, with_hpc: bool = True, min_acc: float = 0.25, ): reset_seed() save_dir = trainer_options["default_root_dir"] # logger file to get meta logger = get_default_logger(save_dir, version=version) trainer_options.update(logger=logger) trainer = Trainer(**trainer_options) initial_values = torch.tensor( [torch.sum(torch.abs(x)) for x in model.parameters()]) trainer.fit(model, datamodule=data) post_train_values = torch.tensor( [torch.sum(torch.abs(x)) for x in model.parameters()]) assert trainer.state.finished, f"Training failed with {trainer.state}" # Check that the model is actually changed post-training change_ratio = torch.norm(initial_values - post_train_values) assert change_ratio > 0.1, f"the model is changed of {change_ratio}" # test model loading pretrained_model = load_model_from_checkpoint( logger, trainer.checkpoint_callback.best_model_path, type(model)) # test new model accuracy test_loaders = model.test_dataloader( ) if not data else data.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] if not isinstance(model, BoringModel): for dataloader in test_loaders: run_prediction_eval_model_template(model, dataloader, min_acc=min_acc) if with_hpc: if trainer._distrib_type in (DistributedType.DDP, DistributedType.DDP_SPAWN, DistributedType.DDP2): # on hpc this would work fine... but need to hack it for the purpose of the test trainer.optimizers, trainer.lr_schedulers, trainer.optimizer_frequencies = trainer.init_optimizers( pretrained_model) # test HPC saving trainer.checkpoint_connector.hpc_save(save_dir, logger) # test HPC loading checkpoint_path = trainer.checkpoint_connector.get_max_ckpt_path_from_folder( save_dir) trainer.checkpoint_connector.restore(checkpoint_path)
def run_model_test( trainer_options, model: LightningModule, data: LightningDataModule = None, on_gpu: bool = True, version=None, with_hpc: bool = True, min_acc: float = 0.25, ): reset_seed() save_dir = trainer_options["default_root_dir"] # logger file to get meta logger = get_default_logger(save_dir, version=version) trainer_options.update(logger=logger) trainer = Trainer(**trainer_options) initial_values = torch.tensor([torch.sum(torch.abs(x)) for x in model.parameters()]) trainer.fit(model, datamodule=data) post_train_values = torch.tensor([torch.sum(torch.abs(x)) for x in model.parameters()]) assert trainer.state.finished, f"Training failed with {trainer.state}" # Check that the model is actually changed post-training change_ratio = torch.norm(initial_values - post_train_values) assert change_ratio > 0.03, f"the model is changed of {change_ratio}" # test model loading _ = load_model_from_checkpoint(logger, trainer.checkpoint_callback.best_model_path, type(model)) # test new model accuracy test_loaders = model.test_dataloader() if not data else data.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] if not isinstance(model, BoringModel): for dataloader in test_loaders: run_model_prediction(model, dataloader, min_acc=min_acc) if with_hpc: # test HPC saving # save logger to make sure we get all the metrics if logger: logger.finalize("finished") hpc_save_path = trainer.checkpoint_connector.hpc_save_path(save_dir) trainer.save_checkpoint(hpc_save_path) # test HPC loading checkpoint_path = trainer.checkpoint_connector._CheckpointConnector__get_max_ckpt_path_from_folder(save_dir) trainer.checkpoint_connector.restore(checkpoint_path)
def run_model_test_without_loggers(trainer_options, model, min_acc: float = 0.50): reset_seed() # fit model trainer = Trainer(**trainer_options) trainer.fit(model) # correct result and ok accuracy assert trainer.state == TrainerState.FINISHED, f"Training failed with {trainer.state}" pretrained_model = load_model_from_checkpoint( trainer.logger, trainer.checkpoint_callback.best_model_path, type(model)) # test new model accuracy test_loaders = model.test_dataloader() if not isinstance(test_loaders, list): test_loaders = [test_loaders] for dataloader in test_loaders: run_prediction(pretrained_model, dataloader, min_acc=min_acc)