def test_load_state_interoperability(_algos, _model_wrapper, is_resume): config_save = get_empty_config() config_save['compression'] = [{ 'algorithm': algo } for algo in _algos['save_algos']] compressed_model_save, _ = create_compressed_model_and_algo_for_test( BasicConvTestModel(), config_save) model_save = _model_wrapper['save_model'](compressed_model_save) saved_model_state = model_save.state_dict() ref_num_loaded = len(saved_model_state) config_resume = get_empty_config() config_resume['compression'] = [{ 'algorithm': algo } for algo in _algos['load_algos']] compressed_model_resume, _ = create_compressed_model_and_algo_for_test( BasicConvTestModel(), config_resume) model_resume = _model_wrapper['resume_model'](compressed_model_resume) if not is_resume or (is_resume and _algos['is_resume_ok']): act_num_loaded = load_state(model_resume, saved_model_state, is_resume) if ('magnitude_sparsity' in _algos['load_algos'] or 'const_sparsity' in _algos['load_algos']) \ and 'rb_sparsity' in _algos['save_algos']: # no need to load _mask and _uniform ref_num_loaded -= 2 assert act_num_loaded == ref_num_loaded else: with pytest.raises(RuntimeError): load_state(model_resume, saved_model_state, is_resume)
def test_can_restore_binary_mask_on_magnitude_algo_resume(): config = get_empty_config() config['compression'] = { "algorithm": "magnitude_sparsity", "params": { "weight_importance": "abs", "schedule": "multistep", "multistep_sparsity_levels": [0.3, 0.5] } } sparse_model, _ = create_compressed_model_and_algo_for_test( MagnitudeTestModel(), config) with torch.no_grad(): sparse_model(torch.ones([1, 1, 10, 10])) config = get_empty_config() config["compression"] = {"algorithm": "const_sparsity"} const_sparse_model, _ = create_compressed_model_and_algo_for_test( MagnitudeTestModel(), config) load_state(const_sparse_model, sparse_model.state_dict()) op = const_sparse_model.conv1.pre_ops['0'] check_equal(ref_mask_1, op.operand.binary_mask) op = const_sparse_model.conv2.pre_ops['0'] check_equal(ref_mask_2, op.operand.binary_mask)
def test_magnitude_algo_binary_masks_are_applied(): model = BasicConvTestModel() config = get_empty_config() config['compression'] = {'algorithm': "magnitude_sparsity"} compressed_model, compression_ctrl = create_compressed_model_and_algo_for_test( model, config) minfo_list = compression_ctrl.sparsified_module_info # type: List[SparseModuleInfo] minfo = minfo_list[0] # type: SparseModuleInfo minfo.operand.binary_mask = torch.ones_like(minfo.module.weight) # 1x1x2x2 input_ = torch.ones(size=(1, 1, 5, 5)) ref_output_1 = -4 * torch.ones(size=(2, 4, 4)) output_1 = compressed_model(input_) assert torch.all(torch.eq(output_1, ref_output_1)) minfo.operand.binary_mask[0][0][0][1] = 0 minfo.operand.binary_mask[1][0][1][0] = 0 ref_output_2 = -3 * torch.ones_like(ref_output_1) output_2 = compressed_model(input_) assert torch.all(torch.eq(output_2, ref_output_2)) minfo.operand.binary_mask[1][0][0][1] = 0 ref_output_3 = ref_output_2.clone() ref_output_3[1] = -2 * torch.ones_like(ref_output_1[1]) output_3 = compressed_model(input_) assert torch.all(torch.eq(output_3, ref_output_3))
def test_number_of_calling_fq_for_lstm(self): p = LSTMTestSizes(1, 1, 1, 5) num_layers = 2 bidirectional = True num_directions = 2 if bidirectional else 1 bias = True batch_first = False config = get_empty_config( input_sample_sizes=[p.seq_length, p.batch, p.input_size]) config['compression'] = { 'algorithm': 'quantization', 'quantize_inputs': True } test_data = TestLSTMCell.generate_lstm_data(p, num_layers, num_directions, bias=bias, batch_first=batch_first) test_rnn = NNCF_RNN('LSTM', input_size=p.input_size, hidden_size=p.hidden_size, num_layers=num_layers, bidirectional=bidirectional, bias=bias, batch_first=batch_first) TestLSTM.set_ref_lstm_weights(test_data, test_rnn, num_layers, num_directions, bias) test_hidden = TestLSTM.get_test_lstm_hidden(test_data) model, algo = create_compressed_model_and_algo_for_test( test_rnn, config) class Counter: def __init__(self): self.count = 0 def next(self): self.count += 1 def hook(model, input_, counter): counter.next() counters = {} counter_for_input_quantizer = None for name, quantizer in algo.all_quantizations.items(): counter = Counter() quantizer.register_forward_pre_hook(partial(hook, counter=counter)) if str(name) == '/nncf_model_input_0|OUTPUT': counter_for_input_quantizer = counter continue counters[name] = counter _ = model(test_data.x, test_hidden) assert model.get_graph().get_nodes_count( ) == 112 # NB: may always fail in debug due to superfluous 'cat' nodes assert len(counters) + 1 == 55 # 8 WQ + 46 AQ + 1 input AQ for counter in counters.values(): assert counter.count == p.seq_length assert counter_for_input_quantizer.count == 1
def test_can_do_sparsity_freeze_epoch(): def compare_binary_mask(ref_sparse_module_info, sparse_module_info): for ref_sparse_layer, sparse_layer in zip(ref_sparse_module_info, sparse_module_info): if (ref_sparse_layer.operand.binary_mask != sparse_layer.operand.binary_mask).view(-1).sum() != 0: return False return True model = BasicConvTestModel() config = get_empty_config() config['compression'] = {'algorithm': "magnitude_sparsity", "params": {"sparsity_init": 0.1, "sparsity_target": 0.9, "sparsity_target_epoch": 3, "sparsity_freeze_epoch": 2}} _, compression_ctrl = create_compressed_model_and_algo_for_test(model, config) sparsified_minfo_before_update = deepcopy(compression_ctrl.sparsified_module_info) compression_ctrl.scheduler.epoch_step() # update binary_masks compression_ctrl.scheduler.epoch_step() # update binary_masks, freeze binary_masks sparsified_minfo_after_update = deepcopy(compression_ctrl.sparsified_module_info) assert not compare_binary_mask(sparsified_minfo_after_update, sparsified_minfo_before_update) compression_ctrl.scheduler.epoch_step() # don't update binary_masks sparsified_minfo_after_freeze = deepcopy(compression_ctrl.sparsified_module_info) assert compare_binary_mask(sparsified_minfo_after_update, sparsified_minfo_after_freeze)
def test_scheduler_can_do_epoch_step(self, algo, schedule, get_params, ref_levels): model = BasicConvTestModel() config = get_empty_config() config['compression'] = { 'algorithm': algo, "sparsity_init": 0.2, "params": { **get_params(), "schedule": schedule } } _, compression_ctrl = create_compressed_model_and_algo_for_test( model, config) scheduler = compression_ctrl.scheduler scheduler.epoch_step() assert pytest.approx(scheduler.current_sparsity_level) == ref_levels[0] for ref_level in ref_levels[1:]: scheduler.epoch_step() assert pytest.approx(scheduler.current_sparsity_level) == ref_level for m in compression_ctrl.sparsified_module_info: if hasattr(m.operand, "frozen"): assert m.operand.frozen
def test_create_rb_algo_with_per_layer_loss(): config = get_empty_config() config['compression'] = {'algorithm': 'rb_sparsity', "params": {"sparsity_level_setting_mode": 'local'}} _, compression_ctrl = create_compressed_model_and_algo_for_test(MockModel(), config) # pylint: disable=protected-access assert isinstance(compression_ctrl._loss, SparseLossForPerLayerSparsity)
def test_export_stacked_bi_lstm(tmp_path): p = LSTMTestSizes(3, 3, 3, 3) config = get_empty_config( input_sample_sizes=[1, p.hidden_size, p.input_size]) config['compression'] = {'algorithm': 'quantization'} # TODO: batch_first=True fails with building graph: ambiguous call to mul or sigmoid test_rnn = NNCF_RNN('LSTM', input_size=p.input_size, hidden_size=p.hidden_size, num_layers=2, bidirectional=True, batch_first=False) model, algo = create_compressed_model_and_algo_for_test(test_rnn, config) test_path = str(tmp_path.joinpath('test.onnx')) algo.export_model(test_path) assert os.path.exists(test_path) onnx_num = 0 model = onnx.load(test_path) # pylint: disable=no-member for node in model.graph.node: if node.op_type == 'FakeQuantize': onnx_num += 1 assert onnx_num == 50
def get_basic_quantization_config_with_hw_config_type(hw_config_type, input_sample_size): config = get_empty_config(input_sample_sizes=input_sample_size) config["target_device"] = hw_config_type config["compression"] = { "algorithm": "quantization", } return config
def test_can_not_create_magnitude_algo__with_adaptive_scheduler(): config = get_empty_config() config['compression'] = { 'algorithm': 'magnitude_sparsity', "params": { "schedule": 'adaptive' } } with pytest.raises(TypeError): _, _ = create_compressed_model_and_algo_for_test(MockModel(), config)
def test_rb_sparsity__can_set_sparsity_level_for_module(): config = get_empty_config() config['compression'] = {'algorithm': 'rb_sparsity', "params": {"sparsity_level_setting_mode": 'local'}} _, compression_ctrl = create_compressed_model_and_algo_for_test(MockModel(), config) # pylint: disable=protected-access assert list(compression_ctrl._loss.per_layer_target.values())[0] == 1 compression_ctrl.set_sparsity_level(0.7, compression_ctrl.sparsified_module_info[0]) assert list(compression_ctrl._loss.per_layer_target.values())[0] == pytest.approx(0.3)
def test_can_create_rb_algo__with_adaptive_scheduler(): config = get_empty_config() config['compression'] = { 'algorithm': 'rb_sparsity', "params": { "schedule": 'adaptive' } } _, compression_ctrl = create_compressed_model_and_algo_for_test( MockModel(), config) assert isinstance(compression_ctrl.scheduler, AdaptiveSparsityScheduler)
def create_config(): config = get_empty_config() config['compression'] = { 'algorithm': 'quantization', 'initializer': { 'range': { 'num_init_steps': 1 } } } return config
def test_can_choose_scheduler(algo, schedule_type, scheduler_class): config = get_empty_config() config['compression'] = { 'algorithm': algo, "params": { "schedule": schedule_type } } _, compression_ctrl = create_compressed_model_and_algo_for_test( MockModel(), config) assert isinstance(compression_ctrl.scheduler, scheduler_class)
def get_basic_quantization_config(quantization_type, input_sample_sizes=None): config = get_empty_config(input_sample_sizes=input_sample_sizes) config["compression"] = { "algorithm": "quantization", "activations": { "mode": quantization_type }, "weights": { "mode": quantization_type } } return config
def test_can_freeze_binary_masks(): model = BasicConvTestModel() config = get_empty_config() config['compression'] = {'algorithm': "magnitude_sparsity"} _, compression_ctrl = create_compressed_model_and_algo_for_test(model, config) for sparse_layer in compression_ctrl.sparsified_module_info: assert not sparse_layer.operand.frozen compression_ctrl.freeze() for sparse_layer in compression_ctrl.sparsified_module_info: assert sparse_layer.operand.frozen
def test_create_rb_algo_with_stub_scheduler(): config = get_empty_config() config['compression'] = { 'algorithm': 'rb_sparsity', "params": { "sparsity_level_setting_mode": 'local' } } _, compression_ctrl = create_compressed_model_and_algo_for_test( MockModel(), config) # pylint: disable=protected-access assert isinstance(compression_ctrl.scheduler, StubCompressionScheduler)
def test_can_restore_binary_mask_on_magnitude_quant_algo_resume(tmp_path): config = get_empty_config() config["compression"] = [{ "algorithm": "magnitude_sparsity", "params": { "schedule": "multistep", "multistep_sparsity_levels": [0.3, 0.5], "weight_importance": "abs" } }, { "algorithm": "quantization" }] sparse_model, _ = create_compressed_model_and_algo_for_test( MagnitudeTestModel(), config) # load_state doesn't support CPU + Quantization sparse_model = torch.nn.DataParallel(sparse_model) sparse_model.cuda() with torch.no_grad(): sparse_model(torch.ones([1, 1, 10, 10])) config = get_empty_config() config["compression"] = [{ "algorithm": "const_sparsity" }, { "algorithm": "quantization" }] const_sparse_model, _ = create_compressed_model_and_algo_for_test( MagnitudeTestModel(), config) load_state(const_sparse_model, sparse_model.state_dict()) op = const_sparse_model.get_nncf_wrapped_model().conv1.pre_ops['0'] check_equal(ref_mask_1, op.operand.binary_mask) op = const_sparse_model.get_nncf_wrapped_model().conv2.pre_ops['0'] check_equal(ref_mask_2, op.operand.binary_mask)
def test_sparse_network(self, desc: ModelDesc, algo): model = desc.model_builder() from nncf.layers import NNCF_MODULES_MAP sparsifiable_modules = list(NNCF_MODULES_MAP.values()) ref_num_sparsed = len( get_all_modules_by_type(model, sparsifiable_modules)) config = get_empty_config(input_sample_sizes=desc.input_sample_sizes) config["compression"] = {"algorithm": algo} compressed_model, compression_ctrl = \ create_compressed_model_and_algo_for_test(model, config, dummy_forward_fn=desc.dummy_forward_fn) assert ref_num_sparsed == len(compression_ctrl.sparsified_module_info) check_model_graph(compressed_model, desc.dot_filename, algo)
def test_activation_quantizers_order_is_the_same__for_resnet50(tmp_path): config = get_empty_config(input_sample_sizes=[1, 3, 224, 224]) config['compression'] = {'algorithm': 'quantization', "initializer": {"range": {"num_init_steps": 0}}} ngpus_per_node = torch.cuda.device_count() torch.multiprocessing.spawn(activation_quantizers_dumping_worker, nprocs=ngpus_per_node, args=(config, tmp_path), join=True) with open(get_path_to_keys(tmp_path, 0), 'r') as f: ref_list = f.readlines() for i in range(1, ngpus_per_node): with open(get_path_to_keys(tmp_path, i), 'r') as f: curr_list = f.readlines() assert curr_list == ref_list
def test_can_create_sparse_scheduler__with_defaults(self, algo): config = get_empty_config() config['compression'] = { 'algorithm': algo, "params": { "schedule": 'polynomial' } } _, compression_ctrl = create_compressed_model_and_algo_for_test( MockModel(), config) scheduler = compression_ctrl.scheduler assert scheduler.initial_sparsity == 0 assert scheduler.sparsity_target == 0.5 assert scheduler.sparsity_target_epoch == 90 assert scheduler.sparsity_freeze_epoch == 100
def test_ordinary_load(algo, _model_wrapper, is_resume): config = get_empty_config() if algo: config['compression'] = {'algorithm': algo} compressed_model_save, _ = create_compressed_model_and_algo_for_test( BasicConvTestModel(), config) model_save = _model_wrapper['save_model'](compressed_model_save) compressed_model_resume, _ = create_compressed_model_and_algo_for_test( BasicConvTestModel(), config) model_resume = _model_wrapper['resume_model'](compressed_model_resume) num_loaded = load_state(model_resume, model_save.state_dict(), is_resume) assert num_loaded == len(model_save.state_dict())
def test_export_lstm_cell(tmp_path): config = get_empty_config(model_size=1, input_sample_sizes=[1, 1]) config['compression'] = {'algorithm': 'quantization'} model, algo = create_compressed_model_and_algo_for_test( LSTMCellNNCF(1, 1), config) test_path = str(tmp_path.joinpath('test.onnx')) algo.export_model(test_path) assert os.path.exists(test_path) onnx_num = 0 model = onnx.load(test_path) # pylint: disable=no-member for node in model.graph.node: if node.op_type == 'FakeQuantize': onnx_num += 1 assert onnx_num == 12
def test_magnitude_scheduler_can_do_epoch_step__with_multistep(): _ = MagnitudeTestModel() config = get_empty_config() config["compression"] = { "algorithm": "magnitude_sparsity", "params": { "schedule": "multistep", 'multistep_steps': [1] } } _, compression_ctrl = create_compressed_model_and_algo_for_test( MagnitudeTestModel(), config) scheduler = compression_ctrl.scheduler assert isinstance(scheduler, MultiStepSparsityScheduler) assert pytest.approx(scheduler.current_sparsity_level) == 0.1 assert scheduler.sparsity_levels == [0.1, 0.5] scheduler.epoch_step() assert scheduler.current_sparsity_level == 0.5 scheduler.epoch_step() assert scheduler.current_sparsity_level == 0.5
def test_can_create_const_sparse_algo__with_default(): model = BasicConvTestModel() config = get_empty_config() config["compression"] = {"algorithm": "const_sparsity"} sparse_model, compression_ctrl = create_compressed_model_and_algo_for_test( deepcopy(model), config) assert isinstance(compression_ctrl, ConstSparsityController) assert len(list(sparse_model.modules())) == 7 _, sparse_model_conv = check_correct_nncf_modules_replacement( model, sparse_model) for sparse_module in sparse_model_conv.values(): store = [] for op in sparse_module.pre_ops.values(): if isinstance(op, UpdateWeight) and isinstance( op.operand, BinaryMask): ref_mask = torch.ones_like(sparse_module.weight) assert torch.allclose(op.operand.binary_mask, ref_mask) assert op.__class__.__name__ not in store store.append(op.__class__.__name__)
def create_empty_config_without_init_section(): config = get_empty_config() config['compression'] = {'algorithm': 'quantization'} return config
def get_const_sparsity_config(): config = get_empty_config() config['compression'] = {'algorithm': 'const_sparsity'} return config
def create_regular_dataloader(): return create_mock_dataloader(config=get_empty_config(), num_samples=N_SAMPLE)
def __init__(self): self._config = get_empty_config() self._algorithm_sections = {}
def test_number_of_calling_fq_for_gnmt(self): torch.cuda.set_device(0) device = torch.device('cuda') batch_first = False vocab_size = 32000 model_config = { 'hidden_size': 100, 'vocab_size': vocab_size, 'num_layers': 4, 'dropout': 0.2, 'batch_first': batch_first, 'share_embedding': True, } batch_size = 128 sequence_size = 50 input_sample_size = [batch_size, sequence_size ] if batch_first else [sequence_size, batch_size] config = get_empty_config(input_sample_sizes=input_sample_size) config['compression'] = \ {'algorithm': 'quantization', 'quantize_inputs': True, 'quantizable_subgraph_patterns': [["linear", "__add__"], ["sigmoid", "__mul__", "__add__"], ["__add__", "tanh", "__mul__"], ["sigmoid", "__mul__"]], 'disable_function_quantization_hooks': True} config['scopes_without_shape_matching'] = \ ['GNMT/ResidualRecurrentDecoder[decoder]/RecurrentAttention[att_rnn]/BahdanauAttention[attn]', ] model = GNMT(**model_config) model = replace_lstm(model) model.to(device) def dummy_forward_fn(model, seq_len=sequence_size): def gen_packed_sequence(): seq_list = [] seq_lens = torch.LongTensor(batch_size).random_(1, seq_len + 1) seq_lens = torch.sort(seq_lens, descending=True).values for seq_size in seq_lens: seq_list.append( torch.LongTensor(seq_size.item()).random_( 1, vocab_size).to(device)) padded_seq_batch = torch.nn.utils.rnn.pad_sequence( seq_list, batch_first=batch_first) return padded_seq_batch, seq_lens x_data, seq_lens = gen_packed_sequence() input_encoder = x_data input_enc_len = seq_lens.to(device) input_decoder = gen_packed_sequence()[0] model(input_encoder, input_enc_len, input_decoder) algo, model = create_compressed_model( model, config, dummy_forward_fn=dummy_forward_fn, dump_graphs=False) model.to(device) class Counter: def __init__(self): self.count = 0 def next(self): self.count += 1 def hook(model, input_, counter): counter.next() counters = {} for name, quantizer in algo.all_quantizations.items(): counter = Counter() counters[str(name)] = counter quantizer.register_forward_pre_hook(partial(hook, counter=counter)) dummy_forward_fn(model) assert model.get_graph().get_nodes_count( ) == 232 # NB: may always fail in debug due to superfluous 'cat' nodes assert len(counters) == 57 for name, counter in counters.items(): if 'cell' in name or "LSTMCellForwardNNCF" in name: assert counter.count == sequence_size, name else: assert counter.count == 1, name new_seq_len = int(sequence_size / 2) dummy_forward_fn(model, new_seq_len) assert model.get_graph().get_nodes_count( ) == 232 # NB: may always fail in debug due to superfluous 'cat' nodes assert len(counters) == 57 for name, counter in counters.items(): if 'cell' in name or "LSTMCellForwardNNCF" in name: assert counter.count == sequence_size + new_seq_len, name else: assert counter.count == 2, name