示例#1
0
def check_lstm(seq_len,
               input_size,
               hidden_size,
               batch_size,
               init_func,
               inp_moms=[0.0, 1.0]):
    # init_func is the initializer for the model params
    # inp_moms is the [ mean, std dev] of the random input
    input_shape = (input_size, seq_len * batch_size)
    hidden_shape = (hidden_size, seq_len * batch_size)
    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size

    # neon LSTM
    lstm = LSTM(hidden_size,
                init_func,
                activation=Tanh(),
                gate_activation=Logistic())

    inp = np.random.rand(*input_shape) * inp_moms[1] + inp_moms[0]
    inpa = lstm.be.array(inp)
    # import pdb; pdb.set_trace()
    # run neon fprop
    lstm.fprop(inpa)

    # reference numpy LSTM
    lstm_ref = RefLSTM()
    WLSTM = lstm_ref.init(input_size, hidden_size)

    # make ref weights and biases with neon model
    WLSTM[0, :] = lstm.b.get().T
    WLSTM[1:input_size + 1, :] = lstm.W_input.get().T
    WLSTM[input_size + 1:] = lstm.W_recur.get().T

    # transpose input X and do fprop
    inp_ref = inp.copy().T.reshape(seq_len, batch_size, input_size)
    (Hout_ref, cprev, hprev, batch_cache) = lstm_ref.forward(inp_ref, WLSTM)

    # the output needs transpose as well
    Hout_ref = Hout_ref.reshape(seq_len * batch_size, hidden_size).T
    IFOGf_ref = batch_cache['IFOGf'].reshape(seq_len * batch_size,
                                             hidden_size * 4).T
    Ct_ref = batch_cache['Ct'].reshape(seq_len * batch_size, hidden_size).T

    # compare results
    print '====Verifying IFOG===='
    allclose_with_out(lstm.ifog_buffer.get(), IFOGf_ref, rtol=0.0, atol=1.0e-5)

    print '====Verifying cell states===='
    allclose_with_out(lstm.c_act_buffer.get(), Ct_ref, rtol=0.0, atol=1.0e-5)

    print '====Verifying hidden states===='
    allclose_with_out(lstm.h_buffer.get(), Hout_ref, rtol=0.0, atol=1.0e-5)

    print 'fprop is verified'

    # now test the bprop
    # generate random deltas tensor
    deltas = np.random.randn(*hidden_shape)

    lstm.bprop(lstm.be.array(deltas))
    # grab the delta W from gradient buffer
    dWinput_neon = lstm.dW_input.get()
    dWrecur_neon = lstm.dW_recur.get()
    db_neon = lstm.db.get()

    # import pdb; pdb.set_trace()
    deltas_ref = deltas.copy().T.reshape(seq_len, batch_size, hidden_size)
    (dX_ref, dWLSTM_ref, dc0_ref,
     dh0_ref) = lstm_ref.backward(deltas_ref, batch_cache)
    dWrecur_ref = dWLSTM_ref[-hidden_size:, :]
    dWinput_ref = dWLSTM_ref[1:input_size + 1, :]
    db_ref = dWLSTM_ref[0, :]
    dX_ref = dX_ref.reshape(seq_len * batch_size, input_size).T

    # compare results
    print 'Making sure neon LSTM match numpy LSTM in bprop'
    print '====Verifying update on W_recur===='

    assert allclose_with_out(dWrecur_neon,
                             dWrecur_ref.T,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying update on W_input===='
    assert allclose_with_out(dWinput_neon,
                             dWinput_ref.T,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying update on bias===='
    assert allclose_with_out(db_neon.flatten(), db_ref, rtol=0.0, atol=1.0e-5)

    print '====Verifying output delta===='
    assert allclose_with_out(lstm.out_deltas_buffer.get(),
                             dX_ref,
                             rtol=0.0,
                             atol=1.0e-5)

    print 'bprop is verified'

    return
示例#2
0
def check_lstm(seq_len, input_size, hidden_size,
               batch_size, init_func, inp_moms=[0.0, 1.0]):
    # init_func is the initializer for the model params
    # inp_moms is the [ mean, std dev] of the random input
    input_shape = (input_size, seq_len * batch_size)
    hidden_shape = (hidden_size, seq_len * batch_size)
    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size

    # neon LSTM
    lstm = LSTM(hidden_size,
                init_func,
                activation=Tanh(),
                gate_activation=Logistic())

    inp = np.random.rand(*input_shape)*inp_moms[1] + inp_moms[0]
    inpa = lstm.be.array(inp)
    # run neon fprop
    lstm.configure((input_size, seq_len))
    lstm.prev_layer = True  # Hack to force allocating a delta buffer
    lstm.allocate()
    lstm.set_deltas([lstm.be.iobuf(lstm.in_shape)])
    lstm.fprop(inpa)

    # reference numpy LSTM
    lstm_ref = RefLSTM()
    WLSTM = lstm_ref.init(input_size, hidden_size)

    # make ref weights and biases with neon model
    WLSTM[0, :] = lstm.b.get().T
    WLSTM[1:input_size+1, :] = lstm.W_input.get().T
    WLSTM[input_size+1:] = lstm.W_recur.get().T

    # transpose input X and do fprop
    inp_ref = inp.copy().T.reshape(seq_len, batch_size, input_size)
    (Hout_ref, cprev, hprev, batch_cache) = lstm_ref.forward(inp_ref,
                                                             WLSTM)

    # the output needs transpose as well
    Hout_ref = Hout_ref.reshape(seq_len * batch_size, hidden_size).T
    IFOGf_ref = batch_cache['IFOGf'].reshape(seq_len * batch_size, hidden_size * 4).T
    Ct_ref = batch_cache['Ct'].reshape(seq_len * batch_size, hidden_size).T

    # compare results
    print '====Verifying IFOG===='
    allclose_with_out(lstm.ifog_buffer.get(),
                      IFOGf_ref,
                      rtol=0.0,
                      atol=1.0e-5)

    print '====Verifying cell states===='
    allclose_with_out(lstm.c_act_buffer.get(),
                      Ct_ref,
                      rtol=0.0,
                      atol=1.0e-5)

    print '====Verifying hidden states===='
    allclose_with_out(lstm.outputs.get(),
                      Hout_ref,
                      rtol=0.0,
                      atol=1.0e-5)

    print 'fprop is verified'

    # now test the bprop
    # generate random deltas tensor
    deltas = np.random.randn(*hidden_shape)

    lstm.bprop(lstm.be.array(deltas))
    # grab the delta W from gradient buffer
    dWinput_neon = lstm.dW_input.get()
    dWrecur_neon = lstm.dW_recur.get()
    db_neon = lstm.db.get()

    deltas_ref = deltas.copy().T.reshape(seq_len, batch_size, hidden_size)
    (dX_ref, dWLSTM_ref, dc0_ref, dh0_ref) = lstm_ref.backward(deltas_ref,
                                                               batch_cache)
    dWrecur_ref = dWLSTM_ref[-hidden_size:, :]
    dWinput_ref = dWLSTM_ref[1:input_size+1, :]
    db_ref = dWLSTM_ref[0, :]
    dX_ref = dX_ref.reshape(seq_len * batch_size, input_size).T

    # compare results
    print 'Making sure neon LSTM match numpy LSTM in bprop'
    print '====Verifying update on W_recur===='

    assert allclose_with_out(dWrecur_neon,
                             dWrecur_ref.T,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying update on W_input===='
    assert allclose_with_out(dWinput_neon,
                             dWinput_ref.T,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying update on bias===='
    assert allclose_with_out(db_neon.flatten(),
                             db_ref,
                             rtol=0.0,
                             atol=1.0e-5)

    print '====Verifying output delta===='
    assert allclose_with_out(lstm.out_deltas_buffer.get(),
                             dX_ref,
                             rtol=0.0,
                             atol=1.0e-5)

    print 'bprop is verified'

    return
示例#3
0
def gradient_check_ref(seq_len,
                       input_size,
                       hidden_size,
                       batch_size,
                       epsilon=1.0e-5,
                       dtypeu=np.float64,
                       threshold=1e-4):
    # this is a check of the reference code itself
    # estimates the gradients by adding perturbations
    # to the input and the weights and compares to
    # the values calculated in bprop

    # generate sparse random input matrix
    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size
    input_shape = (seq_len, input_size, batch_size)
    # hidden_shape = (seq_len, hidden_size, batch_size)
    (inp_bl, nz_inds) = sparse_rand(input_shape, frac=1.0 / input_shape[1])
    inp_bl = np.random.randn(*input_shape)

    # convert input matrix from neon to ref code format
    inp_bl = inp_bl.swapaxes(1, 2).astype(dtypeu)

    # generate reference LSTM
    lstm_ref = RefLSTM()
    WLSTM = lstm_ref.init(input_size, hidden_size).astype(dtypeu)

    # init parameters as done for neon
    WLSTM = np.random.randn(*WLSTM.shape)

    (Hout, cprev, hprev, cache) = lstm_ref.forward(inp_bl, WLSTM)

    # scale Hout by random matrix...
    rand_scale = np.random.random(Hout.shape) * 2.0 - 1.0
    rand_scale = dtypeu(rand_scale)

    # line below would be the loss function
    # loss_bl = np.sum(rand_scale * Hout)

    # run bprop, input deltas is rand_scale
    (dX_bl, dWLSTM_bl, dc0, dh0) = lstm_ref.backward(rand_scale, cache)

    grads_est = np.zeros(dX_bl.shape)
    inp_pert = inp_bl.copy()
    for pert_ind in range(inp_bl.size):
        save_val = inp_pert.flat[pert_ind]

        # add/subtract perturbations to input
        inp_pert.flat[pert_ind] = save_val + epsilon
        # and run fprop on perturbed input
        (Hout_pos, cprev, hprev, cache) = lstm_ref.forward(inp_pert, WLSTM)

        inp_pert.flat[pert_ind] = save_val - epsilon
        (Hout_neg, cprev, hprev, cache) = lstm_ref.forward(inp_pert, WLSTM)

        # calculate the loss on outputs
        loss_pos = np.sum(rand_scale * Hout_pos)
        loss_neg = np.sum(rand_scale * Hout_neg)

        grads_est.flat[pert_ind] = 0.5 * (loss_pos - loss_neg) / epsilon

        # reset input
        inp_pert.flat[pert_ind] = save_val

    # assert that gradient estimates within rel threshold of
    # bprop calculated deltas
    assert allclose_with_out(grads_est, dX_bl, rtol=threshold, atol=0.0)
    return
示例#4
0
def gradient_check_ref(seq_len, input_size, hidden_size, batch_size,
                       epsilon=1.0e-5, dtypeu=np.float64, threshold=1e-4):
    # this is a check of the reference code itself
    # estimates the gradients by adding perturbations
    # to the input and the weights and compares to
    # the values calculated in bprop

    # generate sparse random input matrix
    NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size
    input_shape = (seq_len, input_size, batch_size)
    # hidden_shape = (seq_len, hidden_size, batch_size)
    (inp_bl, nz_inds) = sparse_rand(input_shape, frac=1.0/input_shape[1])
    inp_bl = np.random.randn(*input_shape)

    # convert input matrix from neon to ref code format
    inp_bl = inp_bl.swapaxes(1, 2).astype(dtypeu)

    # generate reference LSTM
    lstm_ref = RefLSTM()
    WLSTM = lstm_ref.init(input_size, hidden_size).astype(dtypeu)

    # init parameters as done for neon
    WLSTM = np.random.randn(*WLSTM.shape)

    (Hout, cprev, hprev, cache) = lstm_ref.forward(inp_bl, WLSTM)

    # scale Hout by random matrix...
    rand_scale = np.random.random(Hout.shape)*2.0 - 1.0
    rand_scale = dtypeu(rand_scale)

    # line below would be the loss function
    # loss_bl = np.sum(rand_scale * Hout)

    # run bprop, input deltas is rand_scale
    (dX_bl, dWLSTM_bl, dc0, dh0) = lstm_ref.backward(rand_scale, cache)

    grads_est = np.zeros(dX_bl.shape)
    inp_pert = inp_bl.copy()
    for pert_ind in range(inp_bl.size):
        save_val = inp_pert.flat[pert_ind]

        # add/subtract perturbations to input
        inp_pert.flat[pert_ind] = save_val + epsilon
        # and run fprop on perturbed input
        (Hout_pos, cprev, hprev, cache) = lstm_ref.forward(inp_pert, WLSTM)

        inp_pert.flat[pert_ind] = save_val - epsilon
        (Hout_neg, cprev, hprev, cache) = lstm_ref.forward(inp_pert, WLSTM)

        # calculate the loss on outputs
        loss_pos = np.sum(rand_scale*Hout_pos)
        loss_neg = np.sum(rand_scale*Hout_neg)

        grads_est.flat[pert_ind] = 0.5*(loss_pos-loss_neg)/epsilon

        # reset input
        inp_pert.flat[pert_ind] = save_val

    # assert that gradient estimates within rel threshold of
    # bprop calculated deltas
    assert allclose_with_out(grads_est, dX_bl, rtol=threshold, atol=0.0)
    return