示例#1
0
def test_fixed_parameters_2():
    """
    Make sure parameter boundaries are respected
    """
    x = Parameter('x', min=1)
    y = Variable('y')
    model = Model({y: x**2})

    bounded_minimizers = list(subclasses(BoundedMinimizer))
    for minimizer in bounded_minimizers:
        if minimizer is MINPACK:
            # Not a MINPACKable problem because it only has a param
            continue
        fit = Fit(model, minimizer=minimizer)
        assert isinstance(fit.objective, MinimizeModel)
        if minimizer is DifferentialEvolution:
            # Also needs a max
            x.max = 10
            fit_result = fit.execute()
            x.max = None
        else:
            fit_result = fit.execute()
            assert fit_result.value(x) >= 1.0
            assert fit_result.value(x) <= 2.0
        assert fit.minimizer.bounds == [(1, None)]
示例#2
0
def test_fixed_parameters():
    """
    Make sure fixed parameters don't change on fitting
    """
    a, b, c, d = parameters('a, b, c, d')
    x, y = variables('x, y')

    c.value = 4.0
    a.min, a.max = 1.0, 5.0  # Bounds are needed for DifferentialEvolution
    b.min, b.max = 1.0, 5.0
    c.min, c.max = 1.0, 5.0
    d.min, d.max = 1.0, 5.0
    c.fixed = True

    model = Model({y: a * exp(-(x - b)**2 / (2 * c**2)) + d})
    # Generate data
    xdata = np.linspace(0, 100)
    ydata = model(xdata, a=2, b=3, c=2, d=2).y

    for minimizer in subclasses(BaseMinimizer):
        if minimizer is ChainedMinimizer:
            continue
        else:
            fit = Fit(model, x=xdata, y=ydata, minimizer=minimizer)
            fit_result = fit.execute()
            # Should still be 4.0, not 2.0!
            assert 4.0 == fit_result.params['c']
示例#3
0
    def test_constrainedminimizers(self):
        """
        Compare the different constrained minimizers, to make sure all support
        constraints, and converge to the same answer.
        """
        minimizers = list(subclasses(ScipyConstrainedMinimize))
        x = Parameter('x', value=-1.0)
        y = Parameter('y', value=1.0)
        z = Variable('z')
        model = Model({z: 2 * x * y + 2 * x - x ** 2 - 2 * y ** 2})

        # First we try an unconstrained fit
        results = []
        for minimizer in minimizers:
            fit = Fit(- model, minimizer=minimizer)
            fit_result = fit.execute(tol=1e-15)
            results.append(fit_result)

        # Compare the parameter values.
        for r1, r2 in zip(results[:-1], results[1:]):
            self.assertAlmostEqual(r1.value(x), r2.value(x), 6)
            self.assertAlmostEqual(r1.value(y), r2.value(y), 6)
            np.testing.assert_almost_equal(r1.covariance_matrix,
                                           r2.covariance_matrix)

        constraints = [
            Ge(y - 1, 0),  # y - 1 >= 0,
            Eq(x ** 3 - y, 0),  # x**3 - y == 0,
        ]

        # Constrained fit.
        results = []
        for minimizer in minimizers:
            if minimizer is COBYLA:
                # COBYLA only supports inequility.
                continue
            fit = Fit(- model, constraints=constraints, minimizer=minimizer)
            fit_result = fit.execute(tol=1e-15)
            results.append(fit_result)

        for r1, r2 in zip(results[:-1], results[1:]):
            self.assertAlmostEqual(r1.value(x), r2.value(x), 6)
            self.assertAlmostEqual(r1.value(y), r2.value(y), 6)
            np.testing.assert_almost_equal(r1.covariance_matrix,
                                           r2.covariance_matrix)
示例#4
0
def test_constrainedminimizers():
    """
    Compare the different constrained minimizers, to make sure all support
    constraints, and converge to the same answer.
    """
    minimizers = list(subclasses(ScipyConstrainedMinimize))
    x = Parameter('x', value=-1.0)
    y = Parameter('y', value=1.0)
    z = Variable('z')
    model = Model({z: 2 * x * y + 2 * x - x**2 - 2 * y**2})

    # First we try an unconstrained fit
    results = []
    for minimizer in minimizers:
        fit = Fit(-model, minimizer=minimizer)
        assert isinstance(fit.objective, MinimizeModel)
        fit_result = fit.execute(tol=1e-15)
        results.append(fit_result)

    # Compare the parameter values.
    for r1, r2 in zip(results[:-1], results[1:]):
        assert r1.value(x) == pytest.approx(r2.value(x), 1e-6)
        assert r1.value(y) == pytest.approx(r2.value(y), 1e-6)
        assert r1.covariance_matrix == pytest.approx(r2.covariance_matrix)

    constraints = [
        Ge(y - 1, 0),  # y - 1 >= 0,
        Eq(x**3 - y, 0),  # x**3 - y == 0,
    ]

    # Constrained fit.
    results = []
    for minimizer in minimizers:
        if minimizer is COBYLA:
            # COBYLA only supports inequality.
            continue
        fit = Fit(-model, constraints=constraints, minimizer=minimizer)
        fit_result = fit.execute(tol=1e-15)
        results.append(fit_result)

    for r1, r2 in zip(results[:-1], results[1:]):
        assert r1.value(x) == pytest.approx(r2.value(x), 1e-6)
        assert r1.value(y) == pytest.approx(r2.value(y), 1e-6)
        assert r1.covariance_matrix == pytest.approx(r2.covariance_matrix)
示例#5
0
    def test_non_boundaries(self):
        """
        Make sure parameter boundaries are not invented
        """
        x = Parameter('x')
        y = Variable('y')
        model = Model({y: x**2})

        bounded_minimizers = list(subclasses(BoundedMinimizer))
        bounded_minimizers = [minimizer for minimizer in bounded_minimizers
                              if minimizer is not DifferentialEvolution]
        for minimizer in bounded_minimizers:
            fit = Fit(model, minimizer=minimizer)
            if minimizer is MINPACK:
                pass  # Not a MINPACKable problem because it only has a param
            else:
                fit_result = fit.execute()
                self.assertAlmostEqual(fit_result.value(x), 0.0)
            self.assertEqual(fit.minimizer.bounds, [(None, None)])
示例#6
0
def test_non_boundaries():
    """
    Make sure parameter boundaries are not invented
    """
    x = Parameter('x')
    y = Variable('y')
    model = Model({y: x**2})

    bounded_minimizers = list(subclasses(BoundedMinimizer))
    bounded_minimizers = [
        minimizer for minimizer in bounded_minimizers
        if minimizer is not DifferentialEvolution
    ]
    for minimizer in bounded_minimizers:
        # Not a MINPACKable problem because it only has a param
        if minimizer is MINPACK:
            continue
        fit = Fit(model, minimizer=minimizer)
        fit_result = fit.execute()
        assert fit_result.value(x) == pytest.approx(0.0)
        assert fit.minimizer.bounds == [(None, None)]
示例#7
0
    def test_boundaries(self):
        """
        Make sure parameter boundaries are respected
        """
        x = Parameter('x', min=1)
        y = Variable('y')
        model = Model({y: x**2})

        bounded_minimizers = list(subclasses(BoundedMinimizer))
        for minimizer in bounded_minimizers:
            fit = Fit(model, minimizer=minimizer)
            if minimizer is DifferentialEvolution:
                # Also needs a max
                x.max = 10
                fit_result = fit.execute()
                x.max = None
            elif minimizer is MINPACK:
                pass  # Not a MINPACKable problem because it only has a param
            else:
                fit_result = fit.execute()
                self.assertGreaterEqual(fit_result.value(x), 1.0)
                self.assertLessEqual(fit_result.value(x), 2.0)
            self.assertEqual(fit.minimizer.bounds, [(1, None)])