示例#1
0
def test_rop_lop():
    mx = matrix("mx")
    mv = matrix("mv")
    v = vector("v")
    y = matrix_inverse(mx).sum(axis=0)

    yv = aesara.gradient.Rop(y, mx, mv)
    rop_f = function([mx, mv], yv)

    sy, _ = aesara.scan(
        lambda i, y, x, v: (aesara.gradient.grad(y[i], x) * v).sum(),
        sequences=aet.arange(y.shape[0]),
        non_sequences=[y, mx, mv],
    )
    scan_f = function([mx, mv], sy)

    rng = np.random.default_rng(utt.fetch_seed())
    vx = np.asarray(rng.standard_normal((4, 4)), aesara.config.floatX)
    vv = np.asarray(rng.standard_normal((4, 4)), aesara.config.floatX)

    v1 = rop_f(vx, vv)
    v2 = scan_f(vx, vv)

    assert _allclose(v1, v2), f"ROP mismatch: {v1} {v2}"

    raised = False
    try:
        aesara.gradient.Rop(aesara.clone_replace(y, replace={mx: break_op(mx)}), mx, mv)
    except ValueError:
        raised = True
    if not raised:
        raise Exception(
            "Op did not raised an error even though the function"
            " is not differentiable"
        )

    vv = np.asarray(rng.uniform(size=(4,)), aesara.config.floatX)
    yv = aesara.gradient.Lop(y, mx, v)
    lop_f = function([mx, v], yv)

    sy = aesara.gradient.grad((v * y).sum(), mx)
    scan_f = function([mx, v], sy)

    v1 = lop_f(vx, vv)
    v2 = scan_f(vx, vv)
    assert _allclose(v1, v2), f"LOP mismatch: {v1} {v2}"
示例#2
0
def test_rop_lop():
    mx = tensor.matrix("mx")
    mv = tensor.matrix("mv")
    v = tensor.vector("v")
    y = matrix_inverse(mx).sum(axis=0)

    yv = tensor.Rop(y, mx, mv)
    rop_f = function([mx, mv], yv)

    sy, _ = theano.scan(
        lambda i, y, x, v: (tensor.grad(y[i], x) * v).sum(),
        sequences=tensor.arange(y.shape[0]),
        non_sequences=[y, mx, mv],
    )
    scan_f = function([mx, mv], sy)

    rng = np.random.RandomState(utt.fetch_seed())
    vx = np.asarray(rng.randn(4, 4), theano.config.floatX)
    vv = np.asarray(rng.randn(4, 4), theano.config.floatX)

    v1 = rop_f(vx, vv)
    v2 = scan_f(vx, vv)

    assert _allclose(v1, v2), "ROP mismatch: %s %s" % (v1, v2)

    raised = False
    try:
        tensor.Rop(theano.clone(y, replace={mx: break_op(mx)}), mx, mv)
    except ValueError:
        raised = True
    if not raised:
        raise Exception(("Op did not raised an error even though the function"
                         " is not differentiable"))

    vv = np.asarray(rng.uniform(size=(4, )), theano.config.floatX)
    yv = tensor.Lop(y, mx, v)
    lop_f = function([mx, v], yv)

    sy = tensor.grad((v * y).sum(), mx)
    scan_f = function([mx, v], sy)

    v1 = lop_f(vx, vv)
    v2 = scan_f(vx, vv)
    assert _allclose(v1, v2), "LOP mismatch: %s %s" % (v1, v2)