示例#1
0
def test_executor_dependent(backendopt):

    for datatype in backendopt:
        T.set_backend(datatype)

        A = ad.Variable(name="A", shape=[3, 3])
        B = ad.Variable(name="B", shape=[3, 3])
        AA = ad.einsum('ab,ab->', A, A)
        BB = ad.einsum('ab,ab->', B, B)
        AB = ad.einsum('ab,ab->', A, B)

        out_A = AA + AB
        out_B = AB + AA

        executor = ad.Executor({out_A, out_B})

        data = gen_dict([A, B])
        A_val, = executor.run(feed_dict=data,
                              reset_graph=False,
                              out_nodes=[out_A])
        data2 = gen_dict([A])
        data2.update({B: data[B]})
        B_val, = executor.run(feed_dict=data2, out_nodes=[out_B])
        # This is checking A's val is not reused in B_val computationA.
        assert A_val != B_val
示例#2
0
def test_einsum_multitier(backendopt):

    for datatype in backendopt:
        T.set_backend(datatype)

        input_nodes1, zs1 = get_tree("set1")
        input_nodes2, zs2 = get_tree("set2")
        out1 = zs1 + zs2

        input_nodes3, zs3 = get_tree("set3")
        input_nodes4, zs4 = get_tree("set4")
        out2 = zs3 + zs4
        out = ad.einsum("ij, jk->ik", out1, out2)
        input_nodes = input_nodes1 + input_nodes2 + input_nodes3 + input_nodes4

        generated_feed_dict = gen_dict(input_nodes)

        executor = ad.Executor([out])
        z_val, = executor.run(feed_dict=generated_feed_dict)

        with OutputInjectedModeP(find_topo_sort_p([PseudoNode(out)])):
            trees = find_sub_einsumtree(PseudoNode(out))
            for tree in trees:
                out_node, in_nodes = tree
                new_z = fuse_einsums(out_node.node, in_nodes)
                replace_node(out_node, new_z)

        executor = ad.Executor([out])
        z_new_val, = executor.run(feed_dict=generated_feed_dict)

        assert float_eq(z_val, z_new_val)
示例#3
0
def test_einsum_subtree_clone(backendopt):
    """
        [Subtree clone]
        This case is rather subtle.
        We want to auto fuse
            A   B   C   D
            |    \ /    |
            |     es    |
            |    /  \   |
            |  /      \ |
            es         es
              \       /
                  +

        Here es is einsum.
    """

    for datatype in backendopt:
        T.set_backend(datatype)
        a = ad.Variable(name="a", shape=[3, 3])
        b = ad.Variable(name="b", shape=[3, 2])
        c = ad.Variable(name="c", shape=[2, 3])
        d = ad.Variable(name="d", shape=[3, 3])

        BC = ad.einsum('ik, kj->ij', b, c)  # 3x3

        ABC = ad.einsum('ik, kj->ij', a, BC)  # 3x3

        BCD = ad.einsum('jk, ki->ji', BC, d)  # 3x3

        out = ABC + BCD

        input_nodes = [a, b, c, d]
        generated_feed_dict = gen_dict(input_nodes)

        executor = ad.Executor([out])
        out_val, = executor.run(feed_dict=generated_feed_dict)

        with OutputInjectedModeP(find_topo_sort_p([PseudoNode(out)])):
            trees = find_sub_einsumtree(PseudoNode(out))
            assert len(trees) == 2
            for tree in trees:
                out_node, in_nodes = tree
                new_z = fuse_einsums(out_node.node, in_nodes)
                replace_node(out_node, new_z)

        new_out_val, = executor.run(feed_dict=generated_feed_dict)

        assert float_eq(out_val, new_out_val)
def test_einsum_find_subtree_after_linearization(backendopt):
    """
        An einsum graph like
        A    B   inputs 
        |\   |
        | \  |
        |  \ |
        |   C
        |  / 
        | /
        output

        will produce

        An einsum graph like
        A    B   inputs 
        |\   |
        | A1 |
        |  \ |
        A2  C
        |  / 
        | /
        output

        The subtree inputs must then be [A1, A2, B] rather than A, B.
    """

    for datatype in backendopt:
        T.set_backend(datatype)

        a = ad.Variable(name="a1", shape=[3, 2])
        b = ad.Variable(name="b", shape=[2, 3])

        c = ad.einsum('ik,kj->ij', a, b)
        output = ad.einsum('ik,ij->kj', a, c)

        feed_dict = gen_dict([a, b])
        executor = ad.Executor([output])
        out_val, = executor.run(feed_dict=feed_dict)

        # New graph
        linearize(output)
        tree, = find_sub_einsumtree(PseudoNode(output))
        assert (len(tree[1]) == 3)
def test_einsum_multiuse(backendopt):
    """
        An einsum graph like
        A    B   inputs 
        |\   |
        | \  |
        |  \ |
        |   C
        |  / 
        | /
        output

        will produce

        An einsum graph like
        A    B   inputs 
        |\   |
        | A1 |
        |  \ |
        A2  C
        |  / 
        | /
        output
    """

    for datatype in backendopt:
        T.set_backend(datatype)

        a = ad.Variable(name="a1", shape=[3, 2])
        b = ad.Variable(name="b", shape=[2, 3])

        c = ad.einsum('ik,kj->ij', a, b)
        output = ad.einsum('ik,ij->kj', a, c)

        feed_dict = gen_dict([a, b])

        executor = ad.Executor([output])
        out_val, = executor.run(feed_dict=feed_dict)

        linearize(output)
        executor = ad.Executor([output])
        out_new_val, = executor.run(feed_dict=feed_dict)

        assert T.array_equal(out_val, out_new_val)