def test_API_get_buffer(config): test_name = test_API_get_buffer.__name__ expected = 5 buffer = get_buffer(config, key='validation') actual = len(buffer.read_ids) result = AssertThat(actual, expected).are_equal() print_test_result(result, test_name, expected, actual)
def test_loader_read_id_length(data_filepath): test_name = test_loader_read_id_length.__name__ expected = len('002f0f2d-ffc1-4072-82d3-6ce425d9724e') loader = DataLoader(data_filepath) actual = len(loader.load_read_ids()[0]) result = AssertThat(actual, expected).are_equal() print_test_result(result, test_name, expected, actual)
def test_API_get_generator(config): test_name = test_API_get_generator.__name__ expected = 10 generator = get_generator(config, key='validation') batches = next(generator.get_batches(10)) actual = len(batches) result = AssertThat(actual, expected).are_equal() print_test_result(result, test_name, expected, actual)
def test_loader_read_id_list_length(data_filepath): test_name = test_loader_read_id_list_length.__name__ expected = 5 loader = DataLoader(data_filepath) reads = loader.load_read_ids() actual = len(reads) result = AssertThat(actual, expected).are_equal() print_test_result(result, test_name, expected, actual)
def test_buffer_get_batched_read_x_shape(data_loader): test_name = test_buffer_get_batched_read_x_shape.__name__ batch_size = 32 buffer_size = 5 signal_window_size = 300 signal_window_stride = 30 min_labels_per_window = 1 buffer = DataBuffer(data_loader, buffer_size, batch_size, signal_window_size, signal_window_stride) x, _, _, _, _ = buffer.get_batched_read() actual = np.array(x).shape result1 = AssertThat(actual[0]).is_in_interval(5e2, 1e5) result2 = AssertThat(actual[1], 300).are_equal() result3 = AssertThat(actual[2], 1).are_equal() print_test_result(result1, f'{test_name}_a', f'Value betweem {5e2} - {1e5}', actual[0]) print_test_result(result1, f'{test_name}_b', 300, actual[1]) print_test_result(result1, f'{test_name}_c', 1, actual[2])
def test_loader_read_dacs_is_normilized(data_filepath): test_name = test_loader_read_dacs_is_normilized.__name__ loader = DataLoader(data_filepath) read_id = loader.load_read_ids()[0] dacs, _, _ = loader.load_read(read_id) arr = np.array(dacs) actual = np.std(arr) result = AssertThat(actual).is_in_interval(0.99, 1.01) print_test_result(result, test_name, "std of signal to be < 1.3 and > 0.7.", actual)
def test_loader_read_dacs_list_elemnt(data_filepath): test_name = test_loader_read_dacs_list_elemnt.__name__ expected = np.float64 loader = DataLoader(data_filepath) read_id = loader.load_read_ids()[0] dacs, _, _ = loader.load_read(read_id) actual = type(dacs[0]) result = AssertThat(actual, expected).are_equal() print_test_result(result, test_name, expected, actual)
def test_generator_get_batch_y_end_token(buffer, label_window_size): setup(buffer) test_name = test_generator_get_batch_y_end_token.__name__ generator = DataGenerator(buffer, label_window_size) _, y = next(generator.get_batch()) end_token_indexes = np.where(y[0] == 6)[0] result = AssertThat(len(end_token_indexes), 1).are_equal() print_test_result(result, test_name, 1, len(end_token_indexes)) teardown(buffer)
def test_generator_get_batched_read_x_shape(buffer, label_window_size): setup(buffer) test_name = test_generator_get_batched_read_x_shape.__name__ expected = (buffer.signal_window_size, 1) # (any, 300, 1) generator = DataGenerator(buffer, label_window_size) x, _, _, _, _ = next(generator.get_batched_read()) actual = x.shape[1:] result = AssertThat(actual, expected).are_equal() print_test_result(result, test_name, expected, actual) teardown(buffer)
def test_generator_get_batch_y_start_token(buffer, label_window_size): setup(buffer) test_name = test_generator_get_batch_y_start_token.__name__ expected = 5 generator = DataGenerator(buffer, label_window_size) _, y = next(generator.get_batch()) actual = y[0][0] result = AssertThat(actual, expected).are_equal() print_test_result(result, test_name, expected, actual) teardown(buffer)
def test_generator_get_batch_y_shape(buffer, label_window_size): setup(buffer) test_name = test_generator_get_batch_y_shape.__name__ expected = (buffer.batch_size, label_window_size) #(32,100) generator = DataGenerator(buffer, label_window_size) _, y = next(generator.get_batch()) actual = y.shape result = AssertThat(actual, expected).are_equal() print_test_result(result, test_name, expected, actual) teardown(buffer)
def test_buffer_get_batch_y_shape(data_loader): test_name = test_buffer_get_batch_y_shape.__name__ expected = (32,) batch_size = 32 buffer_size = 5 signal_window_size = 300 signal_window_stride = 30 min_labels_per_window = 1 buffer = DataBuffer(data_loader, buffer_size, batch_size, signal_window_size, signal_window_stride) _, y = buffer.get_batch() actual = y.shape result = AssertThat(actual, expected).are_equal() print_test_result(result, test_name, expected, actual)
def test_generator_get_batch_y_padding(buffer, label_window_size): setup(buffer) test_name = test_generator_get_batch_y_padding.__name__ generator = DataGenerator(buffer, label_window_size) _, y = next(generator.get_batch()) end_token_indexes = np.where(y[0] == 6)[0] i = end_token_indexes[0] padding = y[0][i + 1:] zeros = np.where(padding == 0)[0] result = AssertThat(len(zeros), len(padding)).are_equal() print_test_result(result, f'{test_name}_only_zero_padding', len(padding), len(zeros)) teardown(buffer)
def test_API_get_trained_model(config, experiment_name): test_name = test_API_get_trained_model.__name__ actual = get_trained_model(config, experiment_name) result = AssertThat(actual).is_instance_of(FishNChips) print_test_result(result, f'{test_name}', 'Is isntance of FishNChips', actual)
def test_API_get_new_model(config): test_name = test_API_get_new_model.__name__ actual = get_new_model(config) result = AssertThat(actual).is_instance_of(FishNChips) print_test_result(result, test_name, 'Is isntance of FishNChips', actual)