示例#1
0
 def test_pipeline_step(self):
     tr_data_X, tr_data_y = rand_df_classification(shape=(100, 20),
                                                   classes=3)
     te_data = rand_df(shape=(100, 20), labeled=False)
     scale_step = StandardScalerStep()
     chi_step = ChiSqSelectionStep(select_kwargs={'k': 20})
     corr_step = PearsonCorrStep(num_features=0.1)
     pca_step = PCAStep(append_input=False, kwargs={'n_components': 5})
     poly_step = PolyStep(kwargs={'degree': 3, 'include_bias': False})
     pipeline = Pipeline([
         scale_step,
         Pipeline([pca_step, poly_step], append_input=True), chi_step
     ])
     r, _ = pipeline.fit_transform(tr_data_X, y=tr_data_y)
     self.assertEqual(type(r), pd.DataFrame)
     r = pipeline.transform(te_data)
     self.assertEqual(type(r), pd.DataFrame)
class SMOTETests1(unittest.TestCase, StepTest):
    step = SMOTEStep()
    X, y = rand_df_classification(val_range=(0, 100))
    test_X = rand_df(val_range=(0, 100))
class ADASYNTests1(unittest.TestCase, StepTest):
    step = ADASYNStep(kwargs={'ratio': {0.0: 100, 1.0: 100}})
    X, y = rand_df_classification(val_range=(0, 100))
    test_X = rand_df(val_range=(0, 100))
class LDATransform2(unittest.TestCase, StepTest):
    step = LDATransformStep(append_input=True)
    X, y = rand_df_classification()
    test_X = rand_df(labeled=False)
class LDATransform1(unittest.TestCase, StepTest):
    step = LDATransformStep()
    X, y = rand_df_classification()
    test_X = rand_df(labeled=False)
示例#6
0
class LFODefault(unittest.TestCase, StepTest):
    step = LOFStep()
    X, y = rand_df_classification(outlier=True)
    test_X = rand_df(labeled=False, outlier=True)
示例#7
0
class ABODTests(unittest.TestCase, StepTest):
    step = ABODStep(num_remove=1)
    X, y = rand_df_classification(outlier=True)
    test_X = rand_df(labeled=False, outlier=True)
class TreeTests2(unittest.TestCase, StepTest):
    step = TreeSelectionStep(tree_model=ExtraTreesClassifier)
    X, y = rand_df_classification()
    test_X = rand_df(labeled=False)
class LassoTests(unittest.TestCase, StepTest):
    step = LassoSelectionStep()
    X, y = rand_df_classification()
    test_X = rand_df(labeled=False)