示例#1
0
def test_fuse_modalities_2():
    """
    With 3 experts and a batch size of 3, the mixture selection should select each of the experts one time.
    """
    class_dim = 3
    batch_size = 3
    num_mods = 3
    with tempfile.TemporaryDirectory() as tmpdirname:
        mst = set_me_up(tmpdirname,
                        method='planar_mixture',
                        attributes={
                            'num_mods': num_mods,
                            'class_dim': class_dim,
                            'device': 'cpu',
                            'batch_size': batch_size,
                            'weighted_mixture': False
                        },
                        dataset=DATASET)

        model: PlanarMixtureMMVae = mst.mm_vae

        enc_mods: Mapping[str, EncModPlanarMixture] = {
            mod_str: EncModPlanarMixture(None,
                                         None,
                                         z0=None,
                                         zk=torch.ones(
                                             (batch_size, class_dim)) * numbr)
            for numbr, mod_str in zip(range(num_mods), mst.modalities)
        }

        joint_zk = model.mixture_component_selection(enc_mods,
                                                     'm0_m1_m2',
                                                     weight_joint=False)
        assert torch.all(
            joint_zk == Tensor([[0., 0., 0.], [1., 1., 1.], [2., 2., 2.]]))
示例#2
0
def test_run_epochs_polymnist(method: str):
    """
    Test if the main training loop runs.
    Assert if the total_test loss is constant. If the assertion fails, it means that the model or the evaluation has
    changed, perhaps involuntarily.
    """
    with tempfile.TemporaryDirectory() as tmpdirname:
        # todo implement calc likelihood for flow based methods
        calc_nll = False if method in [
            'mofop', 'planar_mixture', 'pfom', 'pope', 'fomfop', 'fomop',
            'poe', 'gfm', 'planar_vae', 'sylvester_vae_noflow', 'iwmogfm',
            'iwmogfm2', 'iwmogfm3', 'iwmogfm_amortized', 'iwmogfm_old'
        ] else True
        # calc_nll = False
        mst = set_me_up(
            tmpdirname,
            dataset='polymnist',
            method=method,
            attributes={
                'calc_nll': calc_nll,
                "K": 5,
                "dir_clf": Path("/tmp/trained_clfs_polyMNIST")

                # 'num_mods': 1
                # 'num_flows': 1
            })
        trainer = PolymnistTrainer(mst)
        test_results = trainer.run_epochs()
示例#3
0
def test_fuse_modalities_4():
    """
    With 3 experts and a batch size of 3, the mixture selection should select each of the experts one time.
    """
    class_dim = 3
    batch_size = 3
    num_mods = 3
    with tempfile.TemporaryDirectory() as tmpdirname:
        mst = set_me_up(tmpdirname,
                        method='moe',
                        attributes={
                            'num_mods': num_mods,
                            'class_dim': class_dim,
                            'device': 'cpu',
                            'batch_size': batch_size,
                            'weighted_mixture': False
                        },
                        dataset=DATASET)

        model: MOEMMVae = mst.mm_vae

        mus = torch.ones((num_mods, batch_size, class_dim))
        mus[0] = mus[0] * 0
        mus[2] = mus[2] * 2

        logvars = torch.zeros((num_mods, batch_size, class_dim))

        w_modalities = torch.ones((num_mods, )) * (1 / 3)

        joint_distr = mixture_component_selection(mst.flags, mus, logvars,
                                                  w_modalities)
        assert torch.all(joint_distr.mu == Tensor([[0., 0., 0.], [1., 1., 1.],
                                                   [2., 2., 2.]]))
示例#4
0
def test_run_planar_mixture_no_flow():
    """
    Test if the main training loop runs.
    """
    with tempfile.TemporaryDirectory() as tmpdirname:
        method = 'planar_mixture'
        additional_attrs = {'num_flows': 0, 'num_mods': 1}
        mst = set_me_up(tmpdirname, method, attributes=additional_attrs)
        trainer = PolymnistTrainer(mst)
        test_results = trainer.run_epochs()
示例#5
0
def test_run_epochs_mnistsvhntext(method: str):
    """
    Test if the main training loop runs.
    Assert if the total_test loss is constant. If the assertion fails, it means that the model or the evaluation has
    changed, perhaps involuntarily.
    """
    with tempfile.TemporaryDirectory() as tmpdirname:
        # todo implement calc likelihood for flow based methods
        calc_nll = method not in ['planar_mixture', 'pfom', 'pope']
        mst = set_me_up(tmpdirname,
                        dataset='mnistsvhntext',
                        method=method,
                        attributes={
                            'calc_nll': True,
                            "dir_clf": Path("/tmp/trained_clfs_mst")
                        })
        trainer = mnistsvhnTrainer(mst)
        test_results = trainer.run_epochs()
示例#6
0
def test_fuse_modalities_3():
    """
    test that during the mixture selection, the batches don't get mixed up.
    If 3 experts have a zk of:
    Tensor([[0., 0., 0.],
            [1., 1., 1.],
            [2., 2., 2.]])

    (of shape (batch_size, class dim)).

    Then the mixture selection should select the first batch from expert 1, the second batch from expert 2 and the
    third batch from expert 3, giving the same result.
    """
    class_dim = 3
    batch_size = 3
    num_mods = 3
    with tempfile.TemporaryDirectory() as tmpdirname:
        mst = set_me_up(tmpdirname,
                        method='planar_mixture',
                        attributes={
                            'num_mods': num_mods,
                            'class_dim': class_dim,
                            'device': 'cpu',
                            'batch_size': batch_size,
                            'weighted_mixture': False
                        },
                        dataset=DATASET)

        model: PlanarMixtureMMVae = mst.mm_vae

        enc_mod_zk = torch.ones((batch_size, class_dim))
        enc_mod_zk[0] = enc_mod_zk[0] * 0
        enc_mod_zk[2] = enc_mod_zk[2] * 2

        enc_mods: Mapping[str, EncModPlanarMixture] = {
            mod_str: EncModPlanarMixture(None, None, z0=None, zk=enc_mod_zk)
            for mod_str in mst.modalities
        }

        joint_zk = model.mixture_component_selection(enc_mods,
                                                     'm0_m1_m2',
                                                     weight_joint=False)
        assert torch.all(
            joint_zk == Tensor([[0., 0., 0.], [1., 1., 1.], [2., 2., 2.]]))
示例#7
0
def test_run_epochs_celeba(method: str):
    """
    Test if the main training loop runs.
    Assert if the total_test loss is constant. If the assertion fails, it means that the model or the evaluation has
    changed, perhaps involuntarily.
    """
    with tempfile.TemporaryDirectory() as tmpdirname:
        # todo implement calc likelihood for flow based methods
        calc_nll = method not in ['planar_mixture', 'pfom', 'pope']
        mst = set_me_up(
            tmpdirname,
            dataset='celeba',
            method=method,
            attributes={
                'calc_nll': True,
                'use_clf': True,
                'batch_size': 2,
                # 'calc_prd': True
            })
        trainer = CelebaTrainer(mst)
        test_results = trainer.run_epochs()
示例#8
0
def test_static_results_2mods(method: str):
    """
    Test if the results are constant. If the assertion fails, it means that the model or the evaluation has
    changed, perhaps involuntarily.
    """
    static_results = json2dict(
        Path('static_results.json'))['static_results_2mod']

    with tempfile.TemporaryDirectory() as tmpdirname:
        mst = set_me_up(tmpdirname,
                        method=method,
                        attributes={
                            'num_flows': 0,
                            'num_mods': 2,
                            'deterministic': True,
                            'device': 'cpu',
                            'steps_per_training_epoch': 1,
                            'factorized_representation': False
                        })
        trainer = PolymnistTrainer(mst)
        test_results = trainer.run_epochs()
        assert np.round(test_results.joint_div,
                        1) == np.round(static_results[method]['joint_div'], 1)
        assert np.round(test_results.klds['m0'],
                        1) == np.round(static_results[method]['klds'], 1)
        assert np.round(test_results.lhoods['m0']['m0'],
                        1) == np.round(static_results[method]['lhoods'], 1)
        assert np.round(test_results.log_probs['m0'],
                        0) == np.round(static_results[method]['log_probs'], 0)
        assert np.round(test_results.total_loss,
                        0) == np.round(static_results[method]['total_loss'], 0)
        assert np.round(test_results.lr_eval['m0']['accuracy'],
                        2) == np.round(static_results[method]['lr_eval'], 2)
        assert np.round(test_results.latents['m0']['latents_class']['mu'],
                        2) == np.round(
                            static_results[method]['latents_class']['mu'], 2)
示例#9
0
def test_static_results_1mod(method: str, update_static_results=False):
    """
    Test if the results are constant. If the assertion fails, it means that the model or the evaluation has
    changed, perhaps involuntarily.
    """
    jsonfile = Path(__file__).parent / 'static_results.json'
    static_results = json2dict(jsonfile)['static_results_1mod']

    if method not in static_results:
        write_to_jsonfile(jsonfile, [(f'static_results_1mod.{method}', {})])
        static_results[method] = {}

    static_results = static_results[method]

    with tempfile.TemporaryDirectory() as tmpdirname:
        mst = set_me_up(tmpdirname,
                        dataset='polymnist',
                        method=method,
                        attributes={
                            'num_flows': 0,
                            'num_mods': 1,
                            'deterministic': True,
                            'device': 'cpu',
                            'steps_per_training_epoch': 1,
                            'factorized_representation': False,
                            'calc_nll': False
                        })
        trainer = PolymnistTrainer(mst)
        test_results = trainer.run_epochs()

        if update_static_results:
            static_results['joint_div'] = test_results.joint_div
            static_results['klds'] = test_results.klds['m0']
            # static_results['lhoods'] = test_results.lhoods['m0']['m0']
            static_results['log_probs'] = test_results.log_probs['m0']
            static_results['total_loss'] = test_results.total_loss
            # static_results['lr_eval'] = test_results.lr_eval['m0']['accuracy']
            static_results['latents_class'] = {
                'mu': test_results.latents['m0']['latents_class']['mu']
            }

            write_to_jsonfile(
                jsonfile, [(f'static_results_1mod.{method}', static_results)])

        are_they_equal = {
            'joint_div':
            np.round(test_results.joint_div,
                     5) == np.round(static_results['joint_div'], 5),
            'klds':
            np.round(test_results.klds['m0'],
                     5) == np.round(static_results['klds'], 5),
            # 'lhoods': np.round(test_results.lhoods['m0']['m0'], 3) == np.round(static_results['lhoods'], 3),
            'log_probs':
            test_results.log_probs['m0'] == static_results['log_probs'],
            'total_loss':
            test_results.total_loss == static_results['total_loss'],
            # 'lr_eval': test_results.lr_eval['m0']['accuracy'] == static_results['lr_eval'],
            'latents_class_mu':
            np.round(test_results.latents['m0']['latents_class']['mu'],
                     8) == np.round(static_results['latents_class']['mu'], 8)
        }

        assert all(
            v for _, v in
            are_they_equal.items()), f'Some results changed: {are_they_equal}'
示例#10
0
def test_test_generation():
    with tempfile.TemporaryDirectory() as tmpdirname:
        mst = set_me_up(tmpdirname)
        test_generation(mst)
示例#11
0
def test_generate_plots():
    with tempfile.TemporaryDirectory() as tmpdirname:
        mst = set_me_up(tmpdirname)
        generate_plots(mst, epoch=1)