示例#1
0
    def test_uniquify_str(self):
        """Tests :func:`texar.tf.utils.uniquify_str`.
        """
        str_set = ['str']
        unique_str = utils.uniquify_str('str', str_set)
        self.assertEqual(unique_str, 'str_1')

        str_set.append('str_1')
        str_set.append('str_2')
        unique_str = utils.uniquify_str('str', str_set)
        self.assertEqual(unique_str, 'str_3')
示例#2
0
def _build_layers(network, layers=None, layer_hparams=None):
    """Builds layers.

    Either :attr:`layer_hparams` or :attr:`layers` must be
    provided. If both are given, :attr:`layers` will be used.

    Args:
        network: An instance of a subclass of
            :class:`~texar.tf.modules.networks.network_base.FeedForwardNetworkBase`
        layers (optional): A list of layer instances.
        layer_hparams (optional): A list of layer hparams, each to which
            is fed to :func:`~texar.tf.core.layers.get_layer` to create the
            layer instance.
    """
    with tf.variable_scope(network.variable_scope):
        if layers is not None:
            network._layers = layers
        else:
            if layer_hparams is None:
                raise ValueError(
                    'Either `layer` or `layer_hparams` is required.')
            network._layers = []
            for _, hparams in enumerate(layer_hparams):
                network._layers.append(get_layer(hparams=hparams))

    for layer in network._layers:
        layer_name = uniquify_str(layer.name, network._layer_names)
        network._layer_names.append(layer_name)
        network._layers_by_name[layer_name] = layer
示例#3
0
    def append_layer(self, layer):
        """Appends a layer to the end of the network. The method is only
        feasible before :attr:`_build` is called.

        Args:
            layer: A :tf_main:`tf.layers.Layer <layers/Layer>` instance, or
                a dict of layer hyperparameters.
        """
        if self._built:
            raise TexarError("`FeedForwardNetwork.append_layer` can be "
                             "called only before `_build` is called.")

        with tf.variable_scope(self.variable_scope):
            layer_ = layer
            if not isinstance(layer_, tf.layers.Layer):
                layer_ = get_layer(hparams=layer_)
            self._layers.append(layer_)
            layer_name = uniquify_str(layer_.name, self._layer_names)
            self._layer_names.append(layer_name)
            self._layers_by_name[layer_name] = layer_
示例#4
0
    def _build_conv1d_hparams(self, pool_hparams):
        """Creates the hparams for each of the conv layers usable for
        :func:`texar.tf.core.layers.get_layer`.
        """
        nconv = self._hparams.num_conv_layers
        if len(pool_hparams) != nconv:
            raise ValueError("`pool_hparams` must be of length %d" % nconv)

        filters = _to_list(self._hparams.filters, 'filters', nconv)

        if nconv == 1:
            kernel_size = _to_list(self._hparams.kernel_size)
            if not isinstance(kernel_size[0], (list, tuple)):
                kernel_size = [kernel_size]
        elif nconv > 1:
            kernel_size = _to_list(self._hparams.kernel_size, 'kernel_size',
                                   nconv)
            kernel_size = [_to_list(ks) for ks in kernel_size]

        other_kwargs = self._hparams.other_conv_kwargs or {}
        if isinstance(other_kwargs, HParams):
            other_kwargs = other_kwargs.todict()
        if not isinstance(other_kwargs, dict):
            raise ValueError("hparams['other_conv_kwargs'] must be a dict.")

        conv_pool_hparams = []
        activation_fn = get_activation_fn(self._hparams.conv_activation,
                                          self._hparams.conv_activation_kwargs)
        for i in range(nconv):
            hparams_i = []
            names = []
            for ks_ij in kernel_size[i]:
                name = uniquify_str("conv_%d" % (i + 1), names)
                names.append(name)
                conv_kwargs_ij = {
                    "filters": filters[i],
                    "kernel_size": ks_ij,
                    "activation": activation_fn,
                    "name": name
                }
                conv_kwargs_ij.update(other_kwargs)
                hparams_i.append({"type": "Conv1D", "kwargs": conv_kwargs_ij})
            if len(hparams_i) == 1:
                conv_pool_hparams.append([hparams_i[0], pool_hparams[i]])
            else:  # creates MergeLayer
                mrg_kwargs_layers = []
                for hparams_ij in hparams_i:
                    seq_kwargs_j = {"layers": [hparams_ij, pool_hparams[i]]}
                    mrg_kwargs_layers.append({
                        "type": "SequentialLayer",
                        "kwargs": seq_kwargs_j
                    })
                mrg_hparams = {
                    "type": "MergeLayer",
                    "kwargs": {
                        "layers": mrg_kwargs_layers,
                        "name": "conv_pool_%d" % (i + 1)
                    }
                }
                conv_pool_hparams.append(mrg_hparams)

        return conv_pool_hparams