def getPep(): regex = { "capital_letters": re.compile("[A-Z]") } clean = [] cont = 0 path_file = "./virus_genome/peptite/antiviral.fasta" pathSave = "path-to/pepdata" with open(path_file, 'r') as f: lines = f.readlines() for l in lines: clean.append(l.replace("\n", "")) for pep in clean: # string preprocessing if ">" in pep: continue if "-" in pep: continue if "(" in pep: continue if regex["capital_letters"].match(pep): print("..." + pep) text_to_image.encode(pep,os.path.join(pathSave,pep+".png")) img = cv2.imread(os.path.join(pathSave,pep+".png")) img = cv2.resize(img,(256,256)) cv2.imwrite(os.path.join(pathSave,pep+".png"), img)
def getData(nstrandsList,pathSave): cont = 0 for s in tqdm(nstrandsList): text_to_image.encode(s,os.path.join(pathSave,"strands_"+str(cont)+".png")) img = cv2.imread(os.path.join(pathSave,"strands_"+str(cont)+".png")) img = cv2.resize(img,(256,256)) cv2.imwrite(os.path.join(pathSave,"strands_"+str(cont)+".png"), img) cont += 1
def main(): os.makedirs("multi-label-png") os.makedirs("multi-label") df = pd.read_csv("test-cc") for index, row in df.iterrows(): text_to_image.encode(row["sequences"], "multi-label-png/" + row["proteins"]) image = cv2.imread("multi-label-png/" + row["proteins"] + ".png", 0) resizedImage = cv2.resize(image, (299, 299)) cv2.imwrite("multi-label/" + row["proteins"] + ".jpg", resizedImage)
def encrypt(request): if request.method == 'POST': input_value = request.POST['iptextarea'] input_value = str(input_value) inp_conversion = Fernet(settings.ENCRYPT_KEY) encrypt_text = inp_conversion.encrypt(input_value.encode('ascii')) encrypted_text = base64.urlsafe_b64encode(encrypt_text).decode('ascii') encrypted_image = text_to_image.encode( encrypted_text, 'image.png') #converting encrypted data into image encrypted_image = Image.open(encrypted_image) #converted #encrypted_image = encrypted_image.resize((300,300)) image_path = 'C:/Users/Ganesh vamsi/MY PROJECTS/image-encrypt-decrypt/image_en_de/static/temp_img/image.png' encrypted_image.save(image_path, 'PNG') #saving the image temporarly ''' image = PIL.Image.open(image_path) w,h=image.size print('44444444444555555',w,h) image.close() ''' with open(image_path, 'rb') as image_file: image_data = base64.b64encode(image_file.read()).decode('utf-8') ctx = dict() ctx['encrypted_image'] = image_data os.remove(image_path, dir_fd=None) sentence = 'Download the below encrypted image' ctx['sentence'] = sentence ctx['enalbe_disable'] = 'enabled' #output and download btn visibility return render(request, 'encrypt.html', ctx) return render(request, 'encrypt.html', {'enalbe_disable': 'disabled'})
def text_to_Image(): global encoded_image_path global inputt inputt=input("Enter text: ") encoded_image_path = text_to_image.encode(inputt, "test") print('This is a test print', encoded_image_path, inputt) print('file is opend!!!!!!!!!!') encoded_image_path = text_to_image.encode_file("../test/test.txt", "result.png") return text_to_Image
def write_image_from_hex(hex_content, out_path): # out path including .png text_to_image.encode(hex_content, 'images/' + out_path)
train, test = 100000, 100000 for i in range(2, 99999): if (w_sheet.Cells(i, 1).Value == None): break if (w_sheet.Cells(i, 3).Value == None): w_sheet.Cells(i, 3).Value = '0 미정' #라벨빈칸 '0 미정'으로 바꿈 st1 = w_sheet.Cells(i, 1).Value # 회사명 받기 st2 = w_sheet.Cells(i, 2).Value # 가게명 받기 st1 = str(st1) st2 = str(st2) #스트링 형식으로 de = w_sheet.Cells(i, 3).Value # 라벨 받아오기 encoded_image_path = text_to_image.encode( st1 + st2, "C:\\Users\\aiia\\.atom\\python\\text_to_image_2\\test\\a_%d_%d.png" % (test, de)) #이미지로 인코딩 img = Image.open( "C:\\Users\\aiia\\.atom\\python\\text_to_image_2\\test\\a_%d_%d.png" % (test, de)) # 이미지 사이즈 조절을 위해 이미지 다시 받아오기 re_img = img.resize((28, 28)) # 이미지 크기 설정 re_img.save( "C:\\Users\\aiia\\.atom\\python\\text_to_image_2\\test\\a_%d_%d.png" % (test, de)) # 변경된 이미지 다시 저장 test = test + 1 excel_file.Save() excel.Quit()
def pre_img(self): if os.path.exists(self.img_PATH): for file in os.scandir(self.img_PATH): os.remove(file.path) WIDTH, HEIGHT = 28, 28 train, test = 100000, 100000 ###### 등록번호 '-' 기호 지우기 #### ''' if self.T == '영수증': buyer = '회사등록번호' else: buyer = '사업자등록번호' ''' buyer = 'NO_BIZ' seller = 'NO_BIZ_C' try: buyer_raw_data = self.df[buyer].str.split('-', n=2, expand=True) buyer_raw_data[buyer] = buyer_raw_data[0].str.cat(buyer_raw_data[1]) buyer_raw_data[buyer] = buyer_raw_data[buyer].str.cat(buyer_raw_data[2]).copy() del (buyer_raw_data[0]) del (buyer_raw_data[1]) del (buyer_raw_data[2]) buyer_raw_data = buyer_raw_data.astype('str') del (self.df[buyer]) self.df[buyer] = buyer_raw_data[buyer].astype('str') except AttributeError: print('-부호 없음') try: buyer_raw_data2 = self.df[seller].str.split('-', n=2, expand=True) print('buyer_raw_data2', buyer_raw_data2) buyer_raw_data2[seller] = buyer_raw_data2[0].str.cat(buyer_raw_data2[1]) buyer_raw_data2[seller] = buyer_raw_data2[seller].str.cat(buyer_raw_data2[2]).copy() del (buyer_raw_data2[0]) del (buyer_raw_data2[1]) del (buyer_raw_data2[2]) buyer_raw_data2 = buyer_raw_data2.astype('str') del (self.df['NO_BIZ_C']) self.df['NO_BIZ_C'] = buyer_raw_data2['NO_BIZ_C'].astype('str') ################################### except AttributeError: print('-부호 없음') # print(ind[0]) name = buyer # xl = excel_PATH2 + 'total_17_18_new.xlsx' name2 = 'NO_BIZ_C' target = 'CD_ACCOUNT' if self.T == '계산서' : e_name = 'e_bill_2019_uniq.json' elif self.T == '영수증': e_name = 'cash_train.json' elif self.T == '기타' : e_name = 'etc.json' df = comp(self.comend,self.excel_PATH, self.T, self.df, target, e_name, name, name2) # df = comp(df,target, 'e_bill_2019_uniq.xlsx',name) # print(len(data)) # print(df) print(df.head()) if self.T == '영수증' or self.T == '기타': pre_data = df.loc[:, [name,name2]].astype('str') pre_data[name] = pre_data[name].str.replace(' ','') pre_data[name2] = pre_data[name2].str.replace(' ','') if self.comend == 'train': pre_data[target] = df[target].astype('str') else : name = 'NM_ITEM' pre_data = df.loc[:, [name]].astype('str') pre_data[name] = pre_data[name].str.replace(' ', '') if self.comend == 'train': pre_data[target] = df[target].astype('str') #print(pre_data.head()) if os.path.exists(self.img_PATH): print("already eixts path") else : os.mkdir(self.img_PATH) print("create path") for i in range(len(pre_data)): img_num = train + i obj = pre_data.loc[i, [name]].item() # obj += pre_data.loc[i,[name2]].item() ##name2도 이미지화 하는데 같이 고려해야 한다면 if self.comend == 'train': c_num = pre_data.loc[i, [target]].str.split(' ', n=2, expand=True) text2img.encode(obj, self.img_PATH + 'a_%d_%d.png' % (img_num, c_num[0])) img = Image.open(self.img_PATH + 'a_%d_%d.png' % (img_num, c_num[0])) resize_img = img.resize((WIDTH, HEIGHT)) resize_img.save(self.img_PATH + 'a_%d_%d.png' % (img_num, c_num[0])) print('이미지화 : %d / %d' % (i, len(pre_data))) else : #c_num = pre_data.loc[i, [target]].str.split(' ', n=2, expand=True) text2img.encode(obj, self.img_PATH + 'a_%d.png' % (img_num)) img = Image.open(self.img_PATH + 'a_%d.png' % (img_num)) resize_img = img.resize((WIDTH, HEIGHT)) resize_img.save(self.img_PATH + 'a_%d.png' % (img_num)) print('이미지화 : %d / %d' % (i, len(pre_data)))
list_notes = [] for note in notes: note_td = note.find_all('td', valign="top") str_note_td = str(note_td) clean3 = re.compile('<.*?>') clean4 = (re.sub(clean, '', str_note_td)) list_notes.append(clean4) #pd.set_option('display.max_colwidth', 60) df = pd.DataFrame(list_notes) table = str.maketrans('', '', string.punctuation) table = str.maketrans('', '', "xa0\xa0\r\n\t\t\t\t\t'") stripped = [w.translate(table) for w in df[0]] p = df[df[0].str.contains("2013") == True] p = p[p[0].str.contains("B.Tech") == True] np = p.values dicter = p.to_string() encoded_image_path = text_to_image.encode(dicter, "image1.png") text, chat = get_last_chat_id_and_text(get_updates()) send_image('/home/sj/Documents/products/noteifi/test.png', chat) send_message( 'Displaying Last {} notifications containing 2013 and B.Tech as tags'. format(len(np)), chat) for i in range(len(np)): send_message(np[i], chat) print(np[i]) time.sleep(43200)
# generate random string of 5 characters import string import random import text_to_image def id_generator(size=6, chars=string.ascii_lowercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) # for x in range(100): # S = id_generator(5) # print(str(x) + '. ' + S) S = id_generator(5) print(S) encoded_image_path = text_to_image.encode(S, "image.png") print(encoded_image_path)