示例#1
0
def test_match():
    rule = Rule.parse(
        "go :: at(P, r) & $link(r, d, r') & $free(r, r') & $free(r', r) -> at(P, r')"
    )

    mapping = {
        Placeholder.parse("P"): Variable.parse("P"),
        Placeholder.parse("r"): Variable.parse("r1: r"),
        Placeholder.parse("r'"): Variable.parse("r2: r"),
        Placeholder.parse("d"): Variable.parse("d"),
    }

    action = Action.parse(
        "go :: at(P, r1: r) & $link(r1: r, d, r2: r) & $free(r1: r, r2: r) & $free(r2: r, r1: r) -> at(P, r2: r)"
    )
    assert rule.match(action) == mapping

    # Order shouldn't matter

    action = Action.parse(
        "go :: $link(r1: r, d, r2: r) & $free(r1: r, r2: r) & $free(r2: r, r1: r) & at(P, r1: r) -> at(P, r2: r)"
    )
    assert rule.match(action) == mapping

    action = Action.parse(
        "go :: at(P, r1: r) & $link(r1: r, d, r2: r) & $free(r2: r, r1: r) & $free(r1: r, r2: r) -> at(P, r2: r)"
    )
    assert rule.match(action) == mapping

    # Predicate matches can't conflict
    action = Action.parse(
        "go :: at(P, r1: r) & $link(r1: r, d, r2: r) & $free(r2: r, r1: r) & $free(r1: r, r2: r) -> at(P, r3: r)"
    )
    assert rule.match(action) == None
示例#2
0
def test_all_instantiations():
    state = State([
        Proposition.parse("at(P, kitchen: r)"),
        Proposition.parse("in(key: o, kitchen: r)"),
        Proposition.parse("in(egg: o, kitchen: r)"),
        Proposition.parse("in(book: o, study: r)"),
        Proposition.parse("in(book: o, study: r)"),
        Proposition.parse("in(map: o, I)"),
    ])

    take = Rule.parse("take :: $at(P, r) & in(o, r) -> in(o, I)")
    actions = set(state.all_instantiations(take))
    assert actions == {
        Action.parse("take :: $at(P, kitchen: r) & in(key: o, kitchen: r) -> in(key: o, I)"),
        Action.parse("take :: $at(P, kitchen: r) & in(egg: o, kitchen: r) -> in(egg: o, I)"),
    }

    drop = take.inverse(name="drop")
    actions = set(state.all_instantiations(drop))
    assert actions == {
        Action.parse("drop :: $at(P, kitchen: r) & in(map: o, I) -> in(map: o, kitchen: r)"),
    }

    state.apply(*actions)
    actions = set(state.all_instantiations(drop))
    assert len(actions) == 0

    # The state is no longer aware of the I variable, so there are no solutions
    actions = set(state.all_instantiations(take))
    assert len(actions) == 0
示例#3
0
def test_match_complex():
    rule = Rule.parse(
        "combine/3 :: $at(P, r) & $correct_location(r) & $in(tool, I) & $in(tool', I) & $in(tool'', I) & in(o, I) & in(o', I) & in(o'', I) & $out(o''') & $used(slot) & used(slot') & used(slot'') -> in(o''', I) & free(slot') & free(slot'')"
    )

    mapping = {
        Placeholder.parse("P"): Variable.parse("P"),
        Placeholder.parse("I"): Variable.parse("I"),
        Placeholder.parse("r"): Variable.parse("r"),
        Placeholder.parse("o"): Variable.parse("o1: o"),
        Placeholder.parse("o'"): Variable.parse("o2: o"),
        Placeholder.parse("o''"): Variable.parse("o3: o"),
        Placeholder.parse("o'''"): Variable.parse("o4: o"),
        Placeholder.parse("tool"): Variable.parse("tool1: tool"),
        Placeholder.parse("tool'"): Variable.parse("tool2: tool"),
        Placeholder.parse("tool''"): Variable.parse("tool3: tool"),
        Placeholder.parse("slot"): Variable.parse("slot1: slot"),
        Placeholder.parse("slot'"): Variable.parse("slot2: slot"),
        Placeholder.parse("slot''"): Variable.parse("slot3: slot"),
    }

    action = Action.parse(
        "combine/3 :: $at(P, r) & $correct_location(r) & $in(tool1: tool, I) & $in(tool2: tool, I) & $in(tool3: tool, I) & in(o1: o, I) & in(o2: o, I) & in(o3: o, I) & $out(o4: o) & $used(slot1: slot) & used(slot2: slot) & used(slot3: slot) -> in(o4: o, I) & free(slot2: slot) & free(slot3: slot)"
    )
    for _ in range(10000):
        assert rule.match(action) == mapping
示例#4
0
    def setUpClass(cls):
        action_lock = Action.parse(
            "lock/c :: $at(P, r) & $at(c, r) & $match(k, c) & $in(k, I) & closed(c) -> locked(c)"
        )
        action_close = Action.parse(
            "close/c :: $at(P, r) & $at(c, r) & open(c) -> closed(c)")
        action_insert1 = Action.parse(
            "insert :: $at(P, r) & $at(c, r) & $open(c) & in(o1: o, I) -> in(o1: o, c)"
        )
        action_insert2 = Action.parse(
            "insert :: $at(P, r) & $at(c, r) & $open(c) & in(o2: o, I) -> in(o2: o, c)"
        )
        action_take1 = Action.parse(
            "take :: $at(P, r) & at(o1: o, r) -> in(o1: o, I)")
        action_take2 = Action.parse(
            "take :: $at(P, r) & at(o2: o, r) -> in(o2: o, I)")
        action_win = Action.parse(
            "win :: $in(o1: o, c) & $in(o2: o, c) & $locked(c) -> win(o1: o, o2: o, c)"
        )

        tree = ActionDependencyTree(element_type=ActionDependencyTreeElement)
        tree.push(action_win)
        tree.push(action_lock)
        tree.push(action_close)
        tree.push(action_insert1)
        tree.push(action_insert2)
        tree.push(action_take1)
        tree.push(action_take2)
        cls.tree = tree
示例#5
0
    def test_flatten(self):
        action_lock = Action.parse(
            "lock/c :: $at(P, r) & $at(c, r) & $match(k, c) & $in(k, I) & closed(c) -> locked(c)"
        )
        action_close = Action.parse(
            "close/c :: $at(P, r) & $at(c, r) & open(c) -> closed(c)")
        action_insert1 = Action.parse(
            "insert :: $at(P, r) & $at(c, r) & $open(c) & in(o1: o, I) -> in(o1: o, c)"
        )
        action_insert2 = Action.parse(
            "insert :: $at(P, r) & $at(c, r) & $open(c) & in(o2: o, I) -> in(o2: o, c)"
        )
        action_take1 = Action.parse(
            "take :: $at(P, r) & at(o1: o, r) -> in(o1: o, I)")
        action_take2 = Action.parse(
            "take :: $at(P, r) & at(o2: o, r) -> in(o2: o, I)")
        action_win = Action.parse(
            "win :: $in(o1: o, c) & $in(o2: o, c) & $locked(c) -> win(o1: o, o2: o, c)"
        )

        tree = ActionDependencyTree(element_type=ActionDependencyTreeElement)
        tree.push(action_win)
        tree.push(action_lock)
        tree.push(action_close)
        tree.push(action_insert1)
        tree.push(action_insert2)
        tree.push(action_take1)
        tree.push(action_take2)
        actions = list(a.name for a in tree.flatten())
        assert actions == [
            'take', 'insert', 'take', 'insert', 'close/c', 'lock/c', 'win'
        ], actions
示例#6
0
def test_is_sequence_applicable():
    state = State([
        Proposition.parse("at(P, r_1: r)"),
        Proposition.parse("empty(r_2: r)"),
        Proposition.parse("empty(r_3: r)"),
    ])

    assert state.is_sequence_applicable([
        Action.parse(
            "go :: at(P, r_1: r) & empty(r_2: r) -> at(P, r_2: r) & empty(r_1: r)"
        ),
        Action.parse(
            "go :: at(P, r_2: r) & empty(r_3: r) -> at(P, r_3: r) & empty(r_2: r)"
        ),
    ])

    assert not state.is_sequence_applicable([
        Action.parse(
            "go :: at(P, r_1: r) & empty(r_2: r) -> at(P, r_2: r) & empty(r_1: r)"
        ),
        Action.parse(
            "go :: at(P, r_1: r) & empty(r_3: r) -> at(P, r_3: r) & empty(r_1: r)"
        ),
    ])

    assert not state.is_sequence_applicable([
        Action.parse(
            "go :: at(P, r_2: r) & empty(r_3: r) -> at(P, r_3: r) & empty(r_2: r)"
        ),
        Action.parse(
            "go :: at(P, r_3: r) & empty(r_1: r) -> at(P, r_1: r) & empty(r_3: r)"
        ),
    ])
def test_is_sequence_applicable():
    state = State(KnowledgeBase.default().logic, [
        Proposition.parse("at(P, r_1: r)"),
        Proposition.parse("empty(r_2: r)"),
        Proposition.parse("empty(r_3: r)"),
    ])

    assert state.is_sequence_applicable([
        Action.parse(
            "go :: at(P, r_1: r) & empty(r_2: r) -> at(P, r_2: r) & empty(r_1: r)"
        ),
        Action.parse(
            "go :: at(P, r_2: r) & empty(r_3: r) -> at(P, r_3: r) & empty(r_2: r)"
        ),
    ])

    assert not state.is_sequence_applicable([
        Action.parse(
            "go :: at(P, r_1: r) & empty(r_2: r) -> at(P, r_2: r) & empty(r_1: r)"
        ),
        Action.parse(
            "go :: at(P, r_1: r) & empty(r_3: r) -> at(P, r_3: r) & empty(r_1: r)"
        ),
    ])

    assert not state.is_sequence_applicable([
        Action.parse(
            "go :: at(P, r_2: r) & empty(r_3: r) -> at(P, r_3: r) & empty(r_2: r)"
        ),
        Action.parse(
            "go :: at(P, r_3: r) & empty(r_1: r) -> at(P, r_1: r) & empty(r_3: r)"
        ),
    ])
示例#8
0
def test_logic_parsing():
    P = Variable("P", "P")
    kitchen = Variable("kitchen", "r")
    egg = Variable("egg", "f")

    assert Variable.parse("P") == P
    assert Variable.parse("kitchen: r") == kitchen

    at_kitchen = Proposition("at", [P, kitchen])
    in_kitchen = Proposition("in", [egg, kitchen])
    raw_egg = Proposition("raw", [egg])
    cooked_egg = Proposition("cooked", [egg])

    assert Proposition.parse("at(P, kitchen: r)") == at_kitchen

    assert Signature.parse("at(P, r)") == at_kitchen.signature

    cook_egg = Action("cook", [at_kitchen, in_kitchen, raw_egg],
                      [at_kitchen, in_kitchen, cooked_egg])
    assert Action.parse(
        "cook :: $at(P, kitchen: r) & $in(egg: f, kitchen: r) & raw(egg: f) -> cooked(egg: f)"
    ) == cook_egg

    P = Placeholder("P", "P")
    r = Placeholder("r", "r")
    d = Placeholder("d", "d")
    rp = Placeholder("r'", "r")
    assert Placeholder.parse("P") == P
    assert Placeholder.parse("r") == r
    assert Placeholder.parse("d") == d
    assert Placeholder.parse("r'") == rp

    at_r = Predicate("at", [P, r])
    link = Predicate("link", [r, d, rp])
    unlocked = Predicate("unlocked", [d])
    at_rp = Predicate("at", [P, rp])
    assert Predicate.parse("link(r, d, r')") == link

    go = Rule("go", [at_r, link, unlocked], [link, unlocked, at_rp])
    assert Rule.parse(
        "go :: at(P, r) & $link(r, d, r') & $unlocked(d) -> at(P, r')") == go

    # Make sure the types match in the whole expression
    assert_raises(ValueError, Rule.parse,
                  "take :: $at(P, r) & $in(c, r) & in(o: k, c) -> in(o, I)")