def from_function(func, input_names, output_names, large_model=False):
    if large_model:
        return convert_variables_to_constants_large_model(func)

    try:
        if get_tf_version() < LooseVersion("2.2"):
            frozen_func = convert_variables_to_constants_v2(
                func, lower_control_flow=False)
        else:
            frozen_func = convert_variables_to_constants_v2(
                func, lower_control_flow=False, aggressive_inlining=True)
    except ValueError as e:
        if "incompatible with expected resource" in str(e):
            frozen_func = convert_variables_to_constants_large_model(func)
            logger.warning(
                "TF freezing failed. Attempting to fix freezing errors.")
            graph_def = fix_freezing_errors(frozen_func)
        else:
            raise e
    else:
        graph_def = frozen_func.graph.as_graph_def(add_shapes=True)

    # output_names = [i.name for i in frozen_func.outputs]
    with tf.Graph().as_default() as tf_graph:
        with tf_session(graph=tf_graph) as sess:
            tf.import_graph_def(graph_def, name='')
            input_names = inputs_without_resource(sess, input_names)
            graph_def = tf_optimize(input_names, output_names, graph_def)
    return graph_def
示例#2
0
 def __init__(self):
     self.platform = sys.platform
     self.tf_version = tf_utils.get_tf_version()
     self.opset = int(os.environ.get("TF2ONNX_TEST_OPSET", constants.PREFERRED_OPSET))
     self.target = os.environ.get("TF2ONNX_TEST_TARGET", ",".join(constants.DEFAULT_TARGET)).split(',')
     self.backend = os.environ.get("TF2ONNX_TEST_BACKEND", "onnxruntime")
     self.backend_version = self._get_backend_version()
     self.log_level = logging.WARNING
     self.temp_dir = utils.get_temp_directory()
def tf_reload_graph(tf_graph):
    """Invoke tensorflow cpp shape inference by reloading graph_def."""
    # invoke c api if tf version is below 1.8
    if get_tf_version() < LooseVersion("1.8"):
        logger.debug("On TF < 1.8, graph is constructed by python API, "
                     "which doesn't invoke shape inference, please set "
                     "TF_C_API_GRAPH_CONSTRUCTION=1 to enable it")

    graph_def = tf_graph.as_graph_def(add_shapes=True)
    with tf.Graph().as_default() as inferred_graph:
        tf.import_graph_def(graph_def, name="")
    return inferred_graph
示例#4
0
 def __init__(self):
     self.platform = sys.platform
     self.tf_version = tf_utils.get_tf_version()
     self.opset = int(os.environ.get("TF2ONNX_TEST_OPSET", constants.PREFERRED_OPSET))
     self.target = os.environ.get("TF2ONNX_TEST_TARGET", ",".join(constants.DEFAULT_TARGET)).split(',')
     self.backend = os.environ.get("TF2ONNX_TEST_BACKEND", "onnxruntime")
     self.skip_tflite_tests = os.environ.get("TF2ONNX_SKIP_TFLITE_TESTS", "FALSE").upper() == "TRUE"
     self.skip_tf_tests = os.environ.get("TF2ONNX_SKIP_TF_TESTS", "FALSE").upper() == "TRUE"
     self.run_tfl_consistency_test = os.environ.get("TF2ONNX_RUN_TFL_CONSISTENCY_TEST", "FALSE").upper() == "TRUE"
     self.backend_version = self._get_backend_version()
     self.log_level = logging.WARNING
     self.temp_dir = utils.get_temp_directory()
def from_function(func, input_names, output_names, large_model=False):
    if large_model:
        return convert_variables_to_constants_large_model(func)

    if get_tf_version() < LooseVersion("2.2"):
        frozen_func = convert_variables_to_constants_v2(func, lower_control_flow=False)
    else:
        frozen_func = convert_variables_to_constants_v2(func, lower_control_flow=False, aggressive_inlining=True)
    graph_def = frozen_func.graph.as_graph_def(add_shapes=True)
    # output_names = [i.name for i in frozen_func.outputs]
    tf_reset_default_graph()
    with tf_session() as sess:
        tf.import_graph_def(graph_def, name='')
        input_names = inputs_without_resource(sess, input_names)
        graph_def = tf_optimize(input_names, output_names, graph_def)
    return graph_def
def infer_shape(tf_graph, shape_override):
    """Infer shape for TF graph with shape_override set first."""
    if shape_override:
        logger.info("Apply shape override:")
        for name, shape in shape_override.items():
            logger.info("\tSet %s shape to %s", name, shape)
            tf_graph.get_tensor_by_name(name).set_shape(shape)
        tf_graph = tf_reload_graph(tf_graph)

    tf_graph = infer_shape_for_graph(tf_graph)

    op_outputs_with_none_shape = check_shape_for_tf_graph(tf_graph)
    if op_outputs_with_none_shape:
        if get_tf_version() > LooseVersion("1.5.0"):
            for op, outs in op_outputs_with_none_shape.items():
                logger.warning("Cannot infer shape for %s: %s", op,
                               ",".join(outs))
        tf_graph = infer_shape_for_graph_legacy(tf_graph)

    return tf_graph
示例#7
0
def process_tf_graph(tf_graph, continue_on_error=False, verbose=False, target=None,
                     opset=None, custom_op_handlers=None, custom_rewriter=None,
                     extra_opset=None, shape_override=None, inputs_as_nchw=None,
                     input_names=None, output_names=None, is_subgraph=False):
    """Convert tensorflow graph to onnx graph.
        Args:
            tf_graph: tensorflow graph
            continue_on_error: if an op can't be processed (aka there is no mapping), continue
            verbose: print summary stats (deprecated)
            target: list of workarounds applied to help certain platforms
            opset: the opset to be used (int, default is latest)
            custom_op_handlers: dictionary of custom ops handlers
            custom_rewriter: list of custom graph rewriters
            extra_opset: list of extra opset's, for example the opset's used by custom ops
            shape_override: dict with inputs that override the shapes given by tensorflow
            inputs_as_nchw: transpose inputs in list from nchw to nchw
            input_names: list of input node names in graph, input name format as node_name:port_id
            output_names: list of output node names in graph, output name format as node_name:port_id
        Return:
            onnx graph
    """
    if verbose:
        logger.warning("Argument verbose for process_tf_graph is deprecated. Please use --verbose option instead.")
    del verbose

    opset = utils.find_opset(opset)
    if not is_subgraph:
        logger.info("Using tensorflow=%s, onnx=%s, tf2onnx=%s/%s",
                    get_tf_version(), utils.get_onnx_version(), tf2onnx.__version__, tf2onnx.version.git_version[:6])
        logger.info("Using opset <onnx, %s>", opset)
        if opset > schemas.get_max_supported_opset_version():
            logger.warning("Currently installed onnx package %s is too low to support opset %s, "
                           "please upgrade onnx package to avoid potential conversion issue.",
                           utils.get_onnx_version(), opset)

    is_func = is_function(tf_graph)
    if not is_func:
        tf_graph = infer_shape(tf_graph, shape_override)

    if shape_override is None:
        shape_override = {}
    if inputs_as_nchw is None:
        inputs_as_nchw = []
    if target is None:
        target = constants.DEFAULT_TARGET

    onnx_nodes, op_cnt, attr_cnt, output_shapes, dtypes, _ = tensorflow_to_onnx(tf_graph, shape_override)
    if not is_subgraph:
        # make tf2onnx internal subgraphs from the tensorflow subgraphs
        ordered_func = resolve_functions(tf_graph)
        for func in ordered_func:
            f_inputs_names = [t.name for t in func.inputs]
            f_output_names = [t.name for t in func.outputs]
            fg = process_tf_graph(func, continue_on_error, False, target, opset,
                                  custom_op_handlers, custom_rewriter,
                                  extra_opset, shape_override, inputs_as_nchw,
                                  f_inputs_names, f_output_names, is_subgraph=True)
            fg.graph_name = func.name
            fg.func_inputs = f_inputs_names
            set_function(func.name, fg)

    io_to_check = []
    if input_names:
        io_to_check.extend(input_names)
    if output_names:
        io_to_check.extend(output_names)

    if io_to_check:
        # check output existence in case user passed in wrong output ids
        non_exists = set(io_to_check) - set(output_shapes.keys())
        if non_exists:
            logger.error("\nFailed to convert: inputs/outputs specified do not exist, make sure your passed"
                         "in format: input/output_node_name:port_id. Problematical inputs/outputs are: %s \n",
                         non_exists)
            raise ValueError("Inputs/Outputs Not Found")

    g = Graph(onnx_nodes, output_shapes, dtypes, target, opset, extra_opset, output_names, is_subgraph=is_subgraph)

    # create ops mapping for the desired opsets
    ops_mapping = handler.tf_op.create_mapping(g.opset, g.extra_opset)

    # apply custom ops on top of the assembled opset. We can either complement the opset
    # or override existing ops with a custom op.
    if custom_op_handlers is not None:
        # below is a bit tricky since there are a few api's:
        # 1. the future way we want custom ops to be registered with the @tf_op decorator. THose handlers will be
        #     registered via the decorator on load of the module ... nothing is required here.
        # 2. the old custom op api: a dictionary of {name: (func, args[])
        #     We deal with this by using a compat_handler that wraps to old handler with a new style handler.
        #     This is tempoary to give people give to move to the new api and after tf2onnx-1.5 we want to remove this
        custom_opset = {}
        for k, v in custom_op_handlers.items():
            # FIXME: remove this after tf2onnx-1.5
            def compat_handler(ctx, node, **kwargs):
                # wrap old handler
                name = node.name
                args = kwargs["args"]
                func = kwargs["func"]
                return func(ctx, node, name, args)

            args = v[1]
            kwargs = {"func": v[0]}
            if args:
                onnx_op = args[0]
                kwargs["onnx_op"] = onnx_op
                args = args[1:]
            kwargs["args"] = args
            new_handler = handler.tf_op(k,
                                        domain=constants.TENSORFLOW_OPSET.domain,
                                        kwargs=kwargs)
            new_handler.register_compat_handler(compat_handler, 1)
            custom_opset[k] = (compat_handler, kwargs)
        ops_mapping.update(custom_opset)

    if inputs_as_nchw:
        transpose_inputs(g, inputs_as_nchw)

    # pre-processing graph rewrites
    # bi-directional re-writer should be placed after single directional re-writer
    rewriters = [rewrite_transpose, rewrite_flatten, rewrite_gemm,
                 rewrite_random_uniform, rewrite_random_uniform_fold_const,
                 rewrite_random_normal, rewrite_dropout, rewrite_eye,
                 rewrite_leakyrelu, rewrite_thresholded_relu, rewrite_conv2d_with_pad,
                 rewrite_single_direction_lstm, rewrite_bi_direction_lstm,
                 rewrite_single_direction_gru, rewrite_bi_direction_gru,
                 rewrite_custom_rnn_cell, rewrite_generic_loop, rewrite_cond,
                 rewrite_biasadd_with_conv2d,
                 ]

    if custom_rewriter is not None:
        rewriters.extend(custom_rewriter)

    run_rewriters(g, rewriters, continue_on_error)

    # some nodes may already copied into inner Graph, so remove them from main Graph.
    g.delete_unused_nodes(output_names)
    topological_sort(g, continue_on_error)

    mapped_op, unmapped_op, exceptions = tensorflow_onnx_mapping(g, ops_mapping)
    if unmapped_op:
        logger.error("Unsupported ops: %s", unmapped_op)
    if exceptions and not continue_on_error:
        raise exceptions[0]

    # post-processing rewriters
    late_rewriters = []
    if constants.TARGET_RS5 in target:
        late_rewriters.append(rewrite_incomplete_type_support_rs5)
    if constants.TARGET_RS6 in target:
        late_rewriters.append(rewrite_incomplete_type_support_rs6)
    if late_rewriters:
        run_rewriters(g, late_rewriters, continue_on_error)

    # onnx requires topological sorting
    topological_sort(g, continue_on_error)

    g.update_proto()

    logger.verbose(
        "Summay Stats:\n"
        "\ttensorflow ops: {}\n"
        "\ttensorflow attr: {}\n"
        "\tonnx mapped: {}\n"
        "\tonnx unmapped: {}".format(op_cnt, attr_cnt, mapped_op, unmapped_op))

    return g
def main():
    global PERFITER
    args = get_args()
    logging.basicConfig(level=logging.get_verbosity_level(args.verbose))
    if args.debug:
        utils.set_debug_mode(True)

    Test.cache_dir = args.cache
    Test.target = args.target
    tests = load_tests_from_yaml(args.config)
    if args.list:
        logger.info(sorted(tests.keys()))
        return 0
    if args.tests:
        test_keys = args.tests.split(",")
    else:
        test_keys = list(tests.keys())

    failed = 0
    count = 0
    PERFITER = args.perfiter
    for test in test_keys:
        logger.info("===================================")

        t = tests[test]
        if args.tests is None:
            if t.disabled and not args.include_disabled:
                logger.info("Skip %s: disabled", test)
                continue

            condition, reason = t.check_opset_constraints(
                args.opset, args.extra_opset)
            if not condition:
                logger.info("Skip %s: %s", test, reason)
                continue

            if t.tf_min_version:
                if tf_utils.get_tf_version() < LooseVersion(
                        str(t.tf_min_version)):
                    logger.info("Skip %s: %s %s", test,
                                "Min TF version needed:", t.tf_min_version)
                    continue

        count += 1
        try:
            logger.info("Running %s", test)
            ret = t.run_test(test,
                             backend=args.backend,
                             onnx_file=args.onnx_file,
                             opset=args.opset,
                             extra_opset=args.extra_opset,
                             perf=args.perf,
                             fold_const=args.fold_const)
        except Exception:
            logger.error("Failed to run %s", test, exc_info=1)
            ret = None
        finally:
            if not utils.is_debug_mode():
                utils.delete_directory(TEMP_DIR)
        if not ret:
            failed += 1

    logger.info("===================================")
    logger.info("RESULT: %s failed of %s, backend=%s", failed, count,
                args.backend)

    if args.perf:
        with open(args.perf, "w") as f:
            f.write("test,tensorflow,onnx\n")
            for test in test_keys:
                t = tests[test]
                if t.perf:
                    # Report perf in ms per inference
                    f.write("{},{},{}\n".format(
                        test, t.tf_runtime * 1000 / PERFITER,
                        t.onnx_runtime * 1000 / PERFITER))
    return failed
示例#9
0
def process_tf_graph(tf_graph,
                     continue_on_error=False,
                     verbose=False,
                     target=None,
                     opset=None,
                     custom_op_handlers=None,
                     custom_rewriter=None,
                     extra_opset=None,
                     shape_override=None,
                     inputs_as_nchw=None,
                     input_names=None,
                     output_names=None,
                     ignore_default=None,
                     use_default=None,
                     is_subgraph=False,
                     const_node_values=None,
                     tensors_to_rename=None,
                     initialized_tables=None,
                     tflite_path=None,
                     dequantize=False):
    """Convert tensorflow graph to onnx graph.
        Args:
            tf_graph: tensorflow graph
            continue_on_error: if an op can't be processed (aka there is no mapping), continue
            verbose: print summary stats (deprecated)
            target: list of workarounds applied to help certain platforms
            opset: the opset to be used (int, default is latest)
            custom_op_handlers: dictionary of custom ops handlers
            custom_rewriter: list of custom graph rewriters
            extra_opset: list of extra opset's, for example the opset's used by custom ops
            shape_override: dict with inputs that override the shapes given by tensorflow
            inputs_as_nchw: transpose inputs in list from nchw to nhwc
            input_names: list of input node names in graph, input name format as node_name:port_id. Optional.
            output_names: list of output node names in graph, format is node_name:port_id. Optional for tflite.
            ignore_default: list of node names of PlaceholderWithDefault ops to change into Placeholder ops
            use_default: list of node names of PlaceholderWithDefault ops to change into Identity ops using the default
            const_node_values: a dict returned by compress_graph_def mapping node names to tensor values
            tensors_to_rename: an optional dict (string->string) mapping tensor names to new names
            initialized_tables: mapping from table shared_names to tuple of keys and values of table
            tflite_path: Path to a tflite file to convert. If used, pass None to tf_graph
        Return:
            onnx graph
    """
    # NOTE: process_parsed_graph and Graph are always given tensors post-rename.
    # process_tf_graph (this function) gets tensors pre-rename.
    if verbose:
        logger.warning(
            "Argument verbose for process_tf_graph is deprecated. Please use --verbose option instead."
        )
    del verbose

    opset = utils.find_opset(opset)
    if not is_subgraph:
        logger.info("Using tensorflow=%s, onnx=%s, tf2onnx=%s/%s",
                    get_tf_version(), utils.get_onnx_version(),
                    tf2onnx.__version__, tf2onnx.version.git_version[:6])
        logger.info("Using opset <onnx, %s>", opset)
        if opset > schemas.get_max_supported_opset_version():
            logger.warning(
                "Currently installed onnx package %s is too low to support opset %s, "
                "please upgrade onnx package to avoid potential conversion issue.",
                utils.get_onnx_version(), opset)

    if shape_override is None:
        shape_override = {}
    if inputs_as_nchw is None:
        inputs_as_nchw = []
    if target is None:
        target = constants.DEFAULT_TARGET

    def check_io(input_names, output_names, output_shapes):
        io_to_check = []
        if input_names:
            io_to_check.extend(input_names)
        if output_names:
            io_to_check.extend(output_names)
        if io_to_check:
            # check output existence in case user passed in wrong output ids
            non_exists = set(io_to_check) - set(output_shapes.keys())
            if non_exists:
                logger.error(
                    "\nFailed to convert: inputs/outputs specified do not exist, make sure your passed"
                    "in format: input/output_node_name:port_id. Problematic inputs/outputs are: %s \n",
                    non_exists)
                raise ValueError("Inputs/Outputs Not Found")

    def rename_tensors_in_dict(d):
        if tensors_to_rename is None:
            return d
        return {tensors_to_rename.get(k, k): v for k, v in d.items()}

    def rename_tensors_in_list(tensors):
        if tensors_to_rename is None or tensors is None:
            return tensors
        return [tensors_to_rename.get(t, t) for t in tensors]

    def rename_tensors_in_nodes(onnx_nodes):
        if tensors_to_rename is None:
            return
        for n in onnx_nodes:
            n.input[:] = rename_tensors_in_list(n.input)
            n.output[:] = rename_tensors_in_list(n.output)

    if tflite_path is not None:
        tflite_graphs, opcodes, model, tensor_shapes = read_tflite_model(
            tflite_path)
        main_g = None
        inputs_as_nchw = rename_tensors_in_list(inputs_as_nchw)
        for i, tfl_graph in enumerate(tflite_graphs):
            is_main_g = i == len(tflite_graphs) - 1
            prefix = '' if is_main_g else tfl_graph.Name().decode() + '_'
            tensor_shapes_from_interpreter = None
            if is_main_g:
                tensor_shapes_from_interpreter = tensor_shapes
            onnx_nodes, op_cnt, attr_cnt, output_shapes, dtypes, f_inputs, f_outputs, graph_name = \
                parse_tflite_graph(tfl_graph, opcodes, model, prefix, tensor_shapes_from_interpreter)
            g_inputs = f_inputs
            g_outputs = f_outputs
            if is_main_g:
                # Override IO in main graph
                check_io(input_names, output_names, output_shapes)
                if input_names is not None:
                    g_inputs = input_names
                if output_names is not None:
                    g_outputs = output_names
            rename_tensors_in_nodes(onnx_nodes)
            g_inputs = rename_tensors_in_list(g_inputs)
            g_outputs = rename_tensors_in_list(g_outputs)
            output_shapes = rename_tensors_in_dict(output_shapes)
            dtypes = rename_tensors_in_dict(dtypes)
            g = Graph(onnx_nodes, output_shapes, dtypes, target, opset,
                      extra_opset, g_inputs, g_outputs, is_subgraph)
            fg = process_parsed_graph(g,
                                      custom_op_handlers,
                                      inputs_as_nchw,
                                      continue_on_error,
                                      custom_rewriter,
                                      target,
                                      g_outputs, {}, {}, {},
                                      op_cnt,
                                      attr_cnt,
                                      is_tflite=True,
                                      dequantize=dequantize)
            fg.graph_name = graph_name
            if is_main_g:
                main_g = fg
            else:
                set_function(graph_name, fg)

        return main_g

    is_func = is_function(tf_graph)
    if not is_func:
        tf_graph = infer_shape(tf_graph, shape_override)

    outputs_to_values, outputs_to_dtypes = compute_const_folding_using_tf(
        tf_graph, const_node_values, output_names)

    onnx_nodes, op_cnt, attr_cnt, output_shapes, dtypes, _ = \
        tensorflow_to_onnx(tf_graph, shape_override, const_node_values, ignore_default, use_default)
    if not is_subgraph:
        # make tf2onnx internal subgraphs from the tensorflow subgraphs
        ordered_func = resolve_functions(tf_graph)
        for func in ordered_func:
            f_inputs_names = [t.name for t in func.inputs]
            f_output_names = [t.name for t in func.outputs]
            fg = process_tf_graph(func,
                                  continue_on_error,
                                  False,
                                  target,
                                  opset,
                                  custom_op_handlers,
                                  custom_rewriter,
                                  extra_opset,
                                  shape_override,
                                  inputs_as_nchw,
                                  f_inputs_names,
                                  f_output_names,
                                  is_subgraph=True,
                                  const_node_values=const_node_values,
                                  tensors_to_rename=tensors_to_rename,
                                  initialized_tables=initialized_tables)
            fg.graph_name = func.name
            set_function(func.name, fg)

    check_io(input_names, output_names, output_shapes)

    if not is_subgraph:
        rename_tensors_in_nodes(onnx_nodes)
        input_names = rename_tensors_in_list(input_names)
        output_names = rename_tensors_in_list(output_names)
        output_shapes = rename_tensors_in_dict(output_shapes)
        dtypes = rename_tensors_in_dict(dtypes)
        inputs_as_nchw = rename_tensors_in_list(inputs_as_nchw)
    g = Graph(onnx_nodes, output_shapes, dtypes, target, opset, extra_opset,
              input_names, output_names, is_subgraph)
    g = process_parsed_graph(g, custom_op_handlers, inputs_as_nchw,
                             continue_on_error, custom_rewriter, target,
                             output_names, initialized_tables,
                             outputs_to_values, outputs_to_dtypes, op_cnt,
                             attr_cnt)
    return g
示例#10
0
def process_tf_graph(tf_graph,
                     continue_on_error=False,
                     verbose=False,
                     target=None,
                     opset=None,
                     custom_op_handlers=None,
                     custom_rewriter=None,
                     extra_opset=None,
                     shape_override=None,
                     inputs_as_nchw=None,
                     input_names=None,
                     output_names=None,
                     ignore_default=None,
                     use_default=None,
                     is_subgraph=False,
                     const_node_values=None,
                     tensors_to_rename=None,
                     initialized_tables=None,
                     tflite_path=None,
                     dequantize=False,
                     tfjs_path=None):
    """Convert tensorflow graph to onnx graph.
        Args:
            tf_graph: tensorflow graph
            continue_on_error: if an op can't be processed (aka there is no mapping), continue
            verbose: print summary stats (deprecated)
            target: list of workarounds applied to help certain platforms
            opset: the opset to be used (int, default is latest)
            custom_op_handlers: dictionary of custom ops handlers
            custom_rewriter: list of custom graph rewriters
            extra_opset: list of extra opset's, for example the opset's used by custom ops
            shape_override: dict with inputs that override the shapes given by tensorflow
            inputs_as_nchw: transpose inputs in list from nchw to nhwc
            input_names: list of input node names in graph, input name format as node_name:port_id. Optional.
            output_names: list of output node names in graph, format is node_name:port_id. Optional for tflite.
            ignore_default: list of node names of PlaceholderWithDefault ops to change into Placeholder ops
            use_default: list of node names of PlaceholderWithDefault ops to change into Identity ops using the default
            const_node_values: a dict returned by compress_graph_def mapping node names to tensor values
            tensors_to_rename: an optional dict (string->string) mapping tensor names to new names
            initialized_tables: mapping from table shared_names to tuple of keys and values of table
            tflite_path: Path to a tflite file to convert. If used, pass None to tf_graph
        Return:
            onnx graph
    """
    # NOTE: process_parsed_graph and Graph are always given tensors post-rename.
    # process_tf_graph (this function) gets tensors pre-rename.
    if verbose:
        logger.warning(
            "Argument verbose for process_tf_graph is deprecated. Please use --verbose option instead."
        )
    del verbose

    opset = utils.find_opset(opset)
    logger.info("Using tensorflow=%s, onnx=%s, tf2onnx=%s/%s",
                get_tf_version(), utils.get_onnx_version(),
                tf2onnx.__version__, tf2onnx.version.git_version[:6])
    logger.info("Using opset <onnx, %s>", opset)
    if opset > schemas.get_max_supported_opset_version():
        logger.warning(
            "Currently installed onnx package %s is too low to support opset %s, "
            "please upgrade onnx package to avoid potential conversion issue.",
            utils.get_onnx_version(), opset)

    clear_functions()
    if inputs_as_nchw is None:
        inputs_as_nchw = []

    is_tflite = False
    if tflite_path is not None:
        main_g, subgraphs = graphs_from_tflite(tflite_path, input_names,
                                               output_names)
        is_tflite = True
    elif tfjs_path is not None:
        main_g, subgraphs = graphs_from_tfjs(tfjs_path, input_names,
                                             output_names, shape_override,
                                             ignore_default, use_default)
    else:
        main_g, subgraphs = graphs_from_tf(tf_graph, input_names, output_names,
                                           shape_override, const_node_values,
                                           ignore_default, use_default)

    for g in [main_g] + subgraphs:
        g.set_config(target, opset, extra_opset)
    g = process_graphs(main_g, subgraphs, custom_op_handlers, inputs_as_nchw,
                       continue_on_error, custom_rewriter, initialized_tables,
                       tensors_to_rename, is_tflite, dequantize)
    return g