from tf_SDUnet import unet, util, image_util, metrics import numpy as np data_provider = image_util.ImageDataProvider("DRIVE700/test/*", data_suffix="_test.tif", mask_suffix='_manual1.png', n_class=2) net = unet.Unet(layers=4, features_root=8, channels=3, n_class=2) test_x, test_y = data_provider(1) prediction = net.predict("mode/drive100_0.92_700/model.ckpt", test_x) prediction = util.crop_to_shape(prediction, (20, 584, 565, 2)) AUC_ROC = metrics.roc_Auc(prediction, util.crop_to_shape(test_y, prediction.shape)) print("auc", AUC_ROC) acc = metrics.acc(prediction, util.crop_to_shape(test_y, prediction.shape)) print("acc:", acc) precision = metrics.precision(prediction, util.crop_to_shape(test_y, prediction.shape)) print("ppv:", precision) sen = metrics.sen(prediction, util.crop_to_shape(test_y, prediction.shape)) print("TPR:", sen) TNR = metrics.TNR(prediction, util.crop_to_shape(test_y, prediction.shape)) print("tnr:", TNR) f1 = metrics.f1score2(prediction, util.crop_to_shape(test_y, prediction.shape)) print("f1:", f1) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "19.jpg")
from tf_SDUnet import unet, util, image_util #preparing data loading data_provider = image_util.ImageDataProvider("dataset2/train/*.jpg", data_suffix=".jpg", mask_suffix='_mask.png', n_class=2) output_path = "out_put2" #setup & training net = unet.Unet(layers=6, features_root=16, channels=3, n_class=2) trainer = unet.Trainer(net) path = trainer.train(data_provider, output_path, training_iters=12, epochs=1) test_x, test_y = data_provider(1) print(test_x.shape) prediction = net.predict(path, test_x) print(prediction) unet.error_rate(prediction, util.crop_to_shape(test_y, prediction.shape)) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "voc_prediction.jpg")
from tf_SDUnet import unet, util, image_util import numpy as np import os data_provider2 = image_util.ImageDataProvider("TNBC/test/*.png", data_suffix=".png", mask_suffix='_mask.png', n_class=2) data_provider = image_util.ImageDataProvider("Model_zoo/train_aug/train/*.png", data_suffix=".png", mask_suffix='_mask.png', n_class=2) output_path = "TNBC2_CKPT" net = unet.Unet(layers=4, features_root=6, channels=3, n_class=2) trainer = unet.Trainer(net, batch_size=8, verification_batch_size=4, optimizer="adam") path = trainer.train(data_provider, output_path, keep_prob=0.8, training_iters=32, epochs=100, display_step=2, restore=True) test_x, test_y = data_provider2(1) prediction = net.predict(path, test_x) error = unet.error_rate(prediction, util.crop_to_shape(test_y, prediction.shape))
from tf_SDUnet import unet, util, image_util, metrics import numpy as np import os data_provider2 = image_util.ImageDataProvider("TNBC/Chase1100/test/*", data_suffix="R.jpg", mask_suffix='R_1stHO.png', n_class=2) data_provider = image_util.ImageDataProvider("TNBC/Chase1100/train/*", data_suffix="L.jpg", mask_suffix='L_1stHO.png', n_class=2) output_path = "mode/CHASE100_0.92_1100" net = unet.Unet(layers=4, features_root=8, channels=3, n_class=2) trainer = unet.Trainer(net, batch_size=4, verification_batch_size=4, optimizer="adam") path = trainer.train(data_provider, output_path, keep_prob=0.92, training_iters=48, epochs=100, display_step=2, restore=False) test_x, test_y = data_provider2(14) prediction = net.predict(path, test_x) #[batches, nx, ny, channels]. prediction = util.crop_to_shape(prediction, (14, 960, 999, 2))
from tf_SDUnet import unet, util, image_util data_provider2 = image_util.ImageDataProvider("TNBC/test/*.png",data_suffix=".png", mask_suffix='_mask.png', n_class=2) #setup & training net = unet.Unet(layers=4, features_root=6, channels=3, n_class=2) test_x, test_y = data_provider2(25) prediction = net.predict("TNBC2_CKPT/model.ckpt", test_x) print(test_y) error=unet.error_rate(prediction, util.crop_to_shape(test_y, prediction.shape)) print("test error:",error) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "TNBC_test13.jpg")
from tf_SDUnet import image_gen, image_util, unet2, util import numpy as np #preparing data loading # data_provider = image_util.ImageDataProvider("nuclei/*.png",data_suffix=".png", mask_suffix=' (2).png', n_class=2) # # data_provider = image_util.ImageDataProvider("data_set/train/*.tif",data_suffix=".tif", mask_suffix='_mask.tif', n_class=2) data_provider2 = image_util.ImageDataProvider("test/*.tif", data_suffix=".tif", mask_suffix='_binary.tif', n_class=2) #data_provider = image_util.ImageDataProvider("Tissue_images/*.tif",data_suffix=".tif", mask_suffix='_binary.tif', n_class=2) data_provider = image_util.ImageDataProvider("tissue_aug/train/*.tif", data_suffix=".tif", mask_suffix='_binary.tif', n_class=2) output_path = "out_put_skip_aug3_160" #setup & training net = unet2.Unet(layers=4, features_root=8, channels=3, n_class=2) trainer = unet2.Trainer(net, batch_size=4, verification_batch_size=4, optimizer="adam") path = trainer.train(data_provider, output_path, keep_prob=0.8, training_iters=124, epochs=1, display_step=2, restore=True) test_x, test_y = data_provider2(14)
from tf_SDUnet import unet, util, image_util, stats_utils, layers import tensorflow as tf import numpy as np DT = image_util.ImageDataProvider("test2/DT/*.tif", data_suffix=".tif", mask_suffix='_binary.tif', n_class=2, shuffle_data=False) ST = image_util.ImageDataProvider("test2/ST/*.tif", data_suffix=".tif", mask_suffix='_binary.tif', n_class=2, shuffle_data=False) ALL = image_util.ImageDataProvider("test2/all/*.tif", data_suffix=".tif", mask_suffix='_binary.tif', n_class=2, shuffle_data=False) net = unet.Unet(layers=4, features_root=8, channels=3, n_class=2) test_x, test_y = DT(6) model = "model/model_f8_0.88_flip_160/model.ckpt" prediction = net.predict(model, test_x) # # pred=tf.cast(prediction, tf.float64) # loss=stats_utils.get_dice(util.crop_to_shape(test_y, prediction.shape),prediction) # init = tf.global_variables_initializer() # with tf.Session() as sess: # # Initialize variables # sess.run(init) # print("loss",sess.run(loss)) print(
from tf_SDUnet import unet, util, image_util,stats_utils,layers import tensorflow as tf import numpy as np Single = image_util.ImageDataProvider("test2/single/*.tif",data_suffix=".tif", mask_suffix='_binary.tif', n_class=2,shuffle_data=False) net = unet.Unet(layers=4, features_root=8, channels=3, n_class=2) test_x, test_y =Single(1) model="model/model_f8_0.88_flip_160/model.ckpt" prediction = net.predict(model, test_x) print("dice2:",stats_utils.get_dice_2(util.crop_to_shape(test_y, prediction.shape),prediction)) print("dice1",stats_utils.get_dice_1(util.crop_to_shape(test_y, prediction.shape),prediction)) print("f1:",unet.f1score2(prediction, util.crop_to_shape(test_y, prediction.shape))) print("aji:",stats_utils.get_aji(util.crop_to_shape(test_y, prediction.shape),prediction)) print("aji+:",stats_utils.get_fast_aji(util.crop_to_shape(test_y, prediction.shape),prediction)) error=unet.error_rate(prediction, util.crop_to_shape(test_y, prediction.shape)) print("error:",error) img = util.combine_img_prediction(test_x, test_y, prediction) util.save_image(img, "result/5698.jpg")
from tf_SDUnet import unet, util, image_util,metrics import numpy as np import EVA data_provider2 = image_util.ImageDataProvider("STARE_NEW/test/*", data_suffix="_train.jpg", mask_suffix='_label.png',n_class=2) net = unet.Unet(layers=4, features_root=8, channels=3, n_class=2) test_x, test_y = data_provider2(1) prediction = net.predict("mode/STARE100_40_0.93/model.ckpt", test_x) print(prediction.shape) prediction=util.crop_to_shape(prediction, (10,605,700,2)) print(prediction.shape) print(prediction) AUC_ROC = metrics.roc_Auc(prediction, util.crop_to_shape(test_y, prediction.shape)) print("auc",AUC_ROC) acc=metrics.acc(prediction,util.crop_to_shape(test_y, prediction.shape)) print("acc:",acc) precision=metrics.precision(prediction,util.crop_to_shape(test_y, prediction.shape)) print("ppv:",precision) sen=metrics.sen(prediction,util.crop_to_shape(test_y, prediction.shape)) print("TPR:",sen) TNR=metrics.TNR(prediction,util.crop_to_shape(test_y, prediction.shape)) print("tnr:",TNR) f1=metrics.f1score2(prediction,util.crop_to_shape(test_y, prediction.shape)) print("f1:",f1) #
from tf_SDUnet import unet, util, image_util, F1test import numpy as np import tensorflow as tf data_provider2 = image_util.ImageDataProvider("test/ST/*.tif", data_suffix=".tif", mask_suffix='_binary.tif', n_class=2, shuffle_data=False) #setup & training net = unet.Unet(layers=4, features_root=8, channels=3, n_class=2) test_x, test_y = data_provider2(14) prediction = net.predict("model_aug_f8_0.75_100/model.ckpt", test_x) print(test_y) error = unet.error_rate(prediction, util.crop_to_shape(test_y, prediction.shape)) print("test error:", error) f1 = unet.f1score2(prediction, util.crop_to_shape(test_y, prediction.shape)) # print(f1) # y_pred = np.argmax(prediction, axis=3)[0] # y_true = np.argmax(util.crop_to_shape(test_y, prediction.shape), axis=3)[0] # precision=F1test.precision(y_true,y_pred) # # f1=F1test.f1score(y_true,y_pred) print("f1", f1)