示例#1
0
 def evaluate(self):
     """Evaluates the agent
 """
     global_iteration = self._agent._agent._train_step_counter.numpy()
     logger.info(
         "Evaluating the agent's performance in {} episodes.".format(
             str(self._params["ML"]["Runner"]["evaluation_steps"])))
     metric_utils.eager_compute(
         self._eval_metrics,
         self._runtime,
         self._agent._agent.policy,
         num_episodes=self._params["ML"]["Runner"]["evaluation_steps"])
     metric_utils.log_metrics(self._eval_metrics)
     tf.summary.scalar("mean_reward",
                       self._eval_metrics[0].result().numpy(),
                       step=global_iteration)
     tf.summary.scalar("mean_steps",
                       self._eval_metrics[1].result().numpy(),
                       step=global_iteration)
     logger.error(
       "The agent achieved on average {} reward and {} steps in \
   {} episodes."     \
       .format(str(self._eval_metrics[0].result().numpy()),
               str(self._eval_metrics[1].result().numpy()),
               str(self._params["ML"]["Runner"]["evaluation_steps"])))
示例#2
0
 def Evaluate(self):
     self._agent._training = False
     global_iteration = self._agent._agent._train_step_counter.numpy()
     self._logger.info(
         "Evaluating the agent's performance in {} episodes.".format(
             str(self._params["ML"]["TFARunner"]["EvaluationSteps", "",
                                                 20])))
     metric_utils.eager_compute(
         self._eval_metrics,
         self._wrapped_env,
         self._agent._agent.policy,
         num_episodes=self._params["ML"]["TFARunner"]["EvaluationSteps", "",
                                                      20])
     metric_utils.log_metrics(self._eval_metrics)
     tf.summary.scalar("mean_reward",
                       self._eval_metrics[0].result().numpy(),
                       step=global_iteration)
     tf.summary.scalar("mean_steps",
                       self._eval_metrics[1].result().numpy(),
                       step=global_iteration)
     self._logger.info(
       "The agent achieved on average {} reward and {} steps in \
   {} episodes."     \
       .format(str(self._eval_metrics[0].result().numpy()),
               str(self._eval_metrics[1].result().numpy()),
               str(self._params["ML"]["TFARunner"]["EvaluationSteps", "", 20])))
示例#3
0
def train_agent(n_iterations):
    time_step = None
    policy_state = agent.collect_policy.get_initial_state(tf_env.batch_size)
    iterator = iter(dataset)
    for iteration in range(n_iterations):
        time_step, policy_state = collect_driver.run(time_step, policy_state)
        trajectories, buffer_info = next(iterator)
        train_loss = agent.train(trajectories)
        print("\r{} loss:{:.5f}".format(iteration, train_loss.loss.numpy()),
              end="")
        if iteration % config.TRAINING_LOG_INTERVAL == 0:
            utils.print_time_stats(train_start, iteration)
            print("\r")
            log_metrics(train_metrics)
        if iteration % config.TRAINING_SAVE_POLICY_INTERVAL == 0:
            save_agent_policy()
        if iteration % config.TRAINING_LOG_MEASURES_INTERVAL == 0:
            # calculate and report the total return over 1 episode
            utils.write_summary("AverageReturnMetric",
                                train_metrics[2].result(), iteration)
            utils.write_summary("AverageEpisodeLengthMetric",
                                train_metrics[3].result(), iteration)
            utils.writer.flush()

    save_agent_policy()
    utils.writer.flush()
示例#4
0
def train_agent(n_iterations):
    time_step = None
    policy_state = agent.collect_policy.get_initial_state(tf_env.batch_size)
    iterator = iter(dataset)
    for iteration in range(n_iterations):
        time_step, policty_state = collect_driver.run(time_step, policy_state)
        trajectories, buffer_info = next(iterator)
        train_loss = agent.train(trajectories)

        print("\r{} loss:{:.5f}".format(
            agent.train_step_counter.value().numpy(), train_loss.loss.numpy()),
              end="")

        if iteration % ITER_LOG_PERIOD == 0:
            fp.write(", ".join(
                ["{}".format(agent.train_step_counter.value().numpy())] +
                ["{}".format(m.result()) for m in training_metrics]) + "\n")

        if iteration % ITER_NEWLINE_PERIOD == 0:
            print()
            log_metrics(training_metrics + training_metrics_2)
            fp.flush()

        if iteration and iteration % ITER_CHECKPOINT_PERIOD == 0:
            train_checkpointer.save(train_step)
            # tf_policy_saver.save(POLICY_SAVE_DIR)
            print()
def train_agent(n_iterations):
    current_time = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    train_log_dir = 'logs/dqn_agent/' + current_time + '/train'
    writer = tf.summary.create_file_writer(train_log_dir)
    time_step = None
    policy_state = agent.collect_policy.get_initial_state(train_env.batch_size)
    iterator = iter(dataset)
    with writer.as_default():
        for iteration in range(n_iterations):
            time_step, policy_state = collect_driver.run(
                time_step, policy_state)
            trajectories, buffer_info = next(iterator)
            train_loss = agent.train(trajectories)
            #log metrics
            print("\r{} loss:{:.5f}".format(iteration,
                                            train_loss.loss.numpy()),
                  end="")
            if iteration % 1000 == 0:
                log_metrics(train_metrics)
                tf.summary.scalar("number_of_episodes",
                                  train_metrics[0].result(), iteration)
                tf.summary.scalar("environment_steps",
                                  train_metrics[1].result(), iteration)
                tf.summary.scalar("average_return", train_metrics[2].result(),
                                  iteration)
                tf.summary.scalar("average_episode_length",
                                  train_metrics[3].result(), iteration)
                writer.flush()
示例#6
0
def train_agent(n_iterations):
    time_step = None
    policy_state = agent.collect_policy.get_initial_state(tf_env.batch_size)
    iterator = iter(dataset)
    for iteration in range(n_iterations):
        time_step, policy_state = collect_driver.run(time_step, policy_state)
        trajectories, buffer_info = next(iterator)
        train_loss = agent.train(trajectories)
        print("\r{} loss:{:.5f}".format(
            iteration, train_loss.loss.numpy()), end="")
        if iteration % 1000 == 0:
            log_metrics(train_metrics)
示例#7
0
 def compute():
     results = metric_utils.eager_compute(eval_metrics, eval_tf_env,
                                          eval_policy, eval_num_episodes,
                                          train_step, eval_summary_writer,
                                          'Metrics - Evaluation')
     # result = metric_utils.compute(
     #     eval_metrics,
     #     eval_tf_env,
     #     eval_policy,
     #     eval_num_episodes
     # )
     metric_utils.log_metrics(eval_metrics)
示例#8
0
 def _eval(self):
     global_step = get_global_counter()
     with tf.summary.record_if(True):
         eager_compute(
             metrics=self._eval_metrics,
             environment=self._eval_env,
             state_spec=self._algorithm.predict_state_spec,
             action_fn=lambda time_step, state: common.algorithm_step(
                 algorithm_step_func=self._algorithm.greedy_predict,
                 time_step=self._algorithm.transform_timestep(time_step),
                 state=state),
             num_episodes=self._num_eval_episodes,
             step_metrics=self._driver.get_step_metrics(),
             train_step=global_step,
             summary_writer=self._eval_summary_writer,
             summary_prefix="Metrics")
         metric_utils.log_metrics(self._eval_metrics)
    def eval_single(self, checkpoint_path):
        """Evaluate a single checkpoint."""
        global_step_val = self._reload_agent(checkpoint_path)
        results = metric_utils.eager_compute(
            self._eval_metrics,
            self._eval_tf_env,
            self._eval_policy,
            num_episodes=self._num_eval_episodes,
            train_step=global_step_val,
            summary_writer=self._eval_summary_writer,
            summary_prefix='Metrics',
        )
        if self._eval_metrics_callback is not None:
            self._eval_metrics_callback(results, global_step_val)
        metric_utils.log_metrics(self._eval_metrics)

        if self._eval_summary_writer:
            self._eval_summary_writer.flush()
        return global_step_val
示例#10
0
 def train_agent(n_iterations):
     saver = PolicySaver(agent.policy, batch_size=tf_env.batch_size)
     time_step = None
     policy_state = agent.collect_policy.get_initial_state(
         tf_env.batch_size)
     iterator = iter(dataset)
     for iteration in tqdm(range(n_iterations)):
         time_step, policy_state = collect_driver.run(
             time_step, policy_state)
         trajectories, buffer_info = next(iterator)
         train_loss = agent.train(trajectories)
         if iteration % 1000 == 0:
             print("\r{} loss:{:.5f}".format(iteration,
                                             train_loss.loss.numpy()),
                   end="")
             log_metrics(train_metrics)
         # save the policy each 10K iteration
         if iteration % 100000 == 0:
             saver.save('policy_%d' % iteration)
示例#11
0
 def evaluate():
     # Override outer record_if that may be out of sync with respect to the
     # env_steps.result() value used for the summay step.
     with tf.compat.v2.summary.record_if(True):
         qj(g_step.numpy(), 'Starting eval at step', tic=1)
         results = pisac_metric_utils.eager_compute(
             eval_metrics,
             eval_tf_env,
             eval_policy,
             histograms=eval_histograms,
             num_episodes=num_eval_episodes,
             train_step=env_steps.result(),
             summary_writer=summary_writer,
             summary_prefix='Eval',
             use_function=drivers_in_graph,
         )
         if eval_metrics_callback is not None:
             eval_metrics_callback(results, env_steps.result())
         tfa_metric_utils.log_metrics(eval_metrics)
         qj(s='Finished eval', toc=1)
示例#12
0
def train_agent(n_iterations):
    checkpoint.restore(manager.latest_checkpoint)
    if manager.latest_checkpoint:
        print("Restored from {}".format(manager.latest_checkpoint))
    else:
        print("Initializing from scratch.")

    time_step = None
    policy_state = agent.collect_policy.get_initial_state(tf_env.batch_size)
    iterator = iter(dataset)
    for iteration in range(n_iterations):
        time_step, policy_state = collect_driver.run(time_step, policy_state)
        trajectories, buffer_info = next(iterator)
        train_loss = agent.train(trajectories)
        print("\r{} loss:{:.5f}".format(iteration, train_loss.loss.numpy()),
              end="")
        if iteration % 1000 == 0:
            log_metrics(train_metrics)
        if iteration % 5000 == 0:
            checkpoint.save(file_prefix=checkpoint_prefix)
示例#13
0
def train_agent(n_iterations):
    time_step = None
    policy_state = agent.collect_policy.get_initial_state(tf_env.batch_size)
    iterator = iter(dataset)
    for iteration in range(initial_policy, n_iterations):
        time_step, policy_state = collect_driver.run(time_step, policy_state)
        trajectories, buffer_info = next(iterator)
        train_loss = agent.train(trajectories)
        print("\r{} loss:{:.5f} done:{:.5f}".format(
            iteration, train_loss.loss.numpy(),
            iteration / n_iterations * 100.0),
              end="")
        if iteration % 1000 == 0:
            log_metrics(train_metrics)
        if iteration % 10000 == 0 and iteration > 0:
            #keras.saved_model.saved_model(my_policy, 'policy_' + str(iteration))
            #tf.saved_model.save(agent, 'policy_' + str(iteration))
            my_policy = agent.policy
            saver = PolicySaver(my_policy)
            saver.save('policy_' + str(iteration))
示例#14
0
def DDPG_Bipedal(root_dir):

    # Setting up directories for results
    root_dir = os.path.expanduser(root_dir)
    train_dir = os.path.join(root_dir, 'train' + '/' + str(run_id))
    eval_dir = os.path.join(root_dir, 'eval' + '/' + str(run_id))
    vid_dir = os.path.join(root_dir, 'vid' + '/' + str(run_id))

    # Set up Summary writer for training and evaluation
    train_summary_writer = tf.compat.v2.summary.create_file_writer(
        train_dir, flush_millis=summaries_flush_secs * 1000)
    train_summary_writer.set_as_default()

    eval_summary_writer = tf.compat.v2.summary.create_file_writer(
        eval_dir, flush_millis=summaries_flush_secs * 1000)
    eval_metrics = [
        # Metric to record average return
        tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
        # Metric to record average episode length
        tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes)
    ]

    #Create global step
    global_step = tf.compat.v1.train.get_or_create_global_step()

    with tf.compat.v2.summary.record_if(
            lambda: tf.math.equal(global_step % summary_interval, 0)):
        # Load Environment with different wrappers
        tf_env = tf_py_environment.TFPyEnvironment(suite_gym.load(env_name))
        eval_tf_env = tf_py_environment.TFPyEnvironment(
            suite_gym.load(env_name))
        eval_py_env = suite_gym.load(env_name)

        # Define Actor Network
        actorNN = actor_network.ActorNetwork(
            tf_env.time_step_spec().observation,
            tf_env.action_spec(),
            fc_layer_params=(400, 300),
        )

        # Define Critic Network
        NN_input_specs = (tf_env.time_step_spec().observation,
                          tf_env.action_spec())

        criticNN = critic_network.CriticNetwork(
            NN_input_specs,
            observation_fc_layer_params=(400, ),
            action_fc_layer_params=None,
            joint_fc_layer_params=(300, ),
        )

        # Define & initialize DDPG Agent
        agent = ddpg_agent.DdpgAgent(
            tf_env.time_step_spec(),
            tf_env.action_spec(),
            actor_network=actorNN,
            critic_network=criticNN,
            actor_optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=actor_learning_rate),
            critic_optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=critic_learning_rate),
            ou_stddev=ou_stddev,
            ou_damping=ou_damping,
            target_update_tau=target_update_tau,
            target_update_period=target_update_period,
            td_errors_loss_fn=tf.compat.v1.losses.mean_squared_error,
            gamma=gamma,
            train_step_counter=global_step)
        agent.initialize()

        # Determine which train metrics to display with summary writer
        train_metrics = [
            tf_metrics.NumberOfEpisodes(),
            tf_metrics.EnvironmentSteps(),
            tf_metrics.AverageReturnMetric(),
            tf_metrics.AverageEpisodeLengthMetric(),
        ]

        # Set policies for evaluation, initial collection
        eval_policy = agent.policy  # Actor policy
        collect_policy = agent.collect_policy  # Actor policy with OUNoise

        # Set up replay buffer
        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            agent.collect_data_spec,
            batch_size=tf_env.batch_size,
            max_length=replay_buffer_capacity)

        # Define driver for initial replay buffer filling
        initial_collect_driver = dynamic_step_driver.DynamicStepDriver(
            tf_env,
            collect_policy,  # Initializes with random Parameters
            observers=[replay_buffer.add_batch],
            num_steps=initial_collect_steps)

        # Define collect driver for collect steps per iteration
        collect_driver = dynamic_step_driver.DynamicStepDriver(
            tf_env,
            collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_steps=collect_steps_per_iteration)

        if use_tf_functions:
            initial_collect_driver.run = common.function(
                initial_collect_driver.run)
            collect_driver.run = common.function(collect_driver.run)
            agent.train = common.function(agent.train)

        # Make 1000 random steps in tf_env and save in Replay Buffer
        logging.info(
            'Initializing replay buffer by collecting experience for 1000 steps with '
            'a random policy.', initial_collect_steps)
        initial_collect_driver.run()

        # Computes Evaluation Metrics
        results = metric_utils.eager_compute(
            eval_metrics,
            eval_tf_env,
            eval_policy,
            num_episodes=num_eval_episodes,
            train_step=global_step,
            summary_writer=eval_summary_writer,
            summary_prefix='Metrics',
        )
        metric_utils.log_metrics(eval_metrics)

        time_step = None
        policy_state = collect_policy.get_initial_state(tf_env.batch_size)

        timed_at_step = global_step.numpy()
        time_acc = 0

        # Dataset outputs steps in batches of 64
        dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                           sample_batch_size=64,
                                           num_steps=2).prefetch(3)
        iterator = iter(dataset)

        def train_step():
            experience, _ = next(
                iterator)  #Get experience from dataset (replay buffer)
            return agent.train(experience)  #Train agent on that experience

        if use_tf_functions:
            train_step = common.function(train_step)

        for _ in range(num_iterations):
            start_time = time.time()  # Get start time
            # Collect data for replay buffer
            time_step, policy_state = collect_driver.run(
                time_step=time_step,
                policy_state=policy_state,
            )
            # Train on experience
            for _ in range(train_steps_per_iteration):
                train_loss = train_step()
            time_acc += time.time() - start_time

            if global_step.numpy() % log_interval == 0:
                logging.info('step = %d, loss = %f', global_step.numpy(),
                             train_loss.loss)
                steps_per_sec = (global_step.numpy() -
                                 timed_at_step) / time_acc
                logging.info('%.3f steps/sec', steps_per_sec)
                tf.compat.v2.summary.scalar(name='iterations_per_sec',
                                            data=steps_per_sec,
                                            step=global_step)
                timed_at_step = global_step.numpy()
                time_acc = 0

            for train_metric in train_metrics:
                train_metric.tf_summaries(train_step=global_step,
                                          step_metrics=train_metrics[:2])

            if global_step.numpy() % eval_interval == 0:
                results = metric_utils.eager_compute(
                    eval_metrics,
                    eval_tf_env,
                    eval_policy,
                    num_episodes=num_eval_episodes,
                    train_step=global_step,
                    summary_writer=eval_summary_writer,
                    summary_prefix='Metrics',
                )
                metric_utils.log_metrics(eval_metrics)
                if results['AverageReturn'].numpy() >= 230.0:
                    video_score = create_video(video_dir=vid_dir,
                                               env_name="BipedalWalker-v2",
                                               vid_policy=eval_policy,
                                               video_id=global_step.numpy())
    return train_loss
示例#15
0
def train_eval(
        root_dir,
        env_name='cartpole',
        task_name='balance',
        observations_whitelist='position',
        num_iterations=100000,
        actor_fc_layers=(400, 300),
        actor_output_fc_layers=(100, ),
        actor_lstm_size=(40, ),
        critic_obs_fc_layers=(400, ),
        critic_action_fc_layers=None,
        critic_joint_fc_layers=(300, ),
        critic_output_fc_layers=(100, ),
        critic_lstm_size=(40, ),
        # Params for collect
        initial_collect_episodes=1,
        collect_episodes_per_iteration=1,
        replay_buffer_capacity=100000,
        ou_stddev=0.2,
        ou_damping=0.15,
        # Params for target update
        target_update_tau=0.05,
        target_update_period=5,
        # Params for train
        # Params for train
        train_steps_per_iteration=200,
        batch_size=64,
        train_sequence_length=10,
        actor_learning_rate=1e-4,
        critic_learning_rate=1e-3,
        dqda_clipping=None,
        td_errors_loss_fn=None,
        gamma=0.995,
        reward_scale_factor=1.0,
        gradient_clipping=None,
        use_tf_functions=True,
        # Params for eval
        num_eval_episodes=10,
        eval_interval=1000,
        # Params for checkpoints, summaries, and logging
        log_interval=1000,
        summary_interval=1000,
        summaries_flush_secs=10,
        debug_summaries=True,
        summarize_grads_and_vars=True,
        eval_metrics_callback=None):
    """A simple train and eval for DDPG."""
    root_dir = os.path.expanduser(root_dir)
    train_dir = os.path.join(root_dir, 'train')
    eval_dir = os.path.join(root_dir, 'eval')

    train_summary_writer = tf.compat.v2.summary.create_file_writer(
        train_dir, flush_millis=summaries_flush_secs * 1000)
    train_summary_writer.set_as_default()

    eval_summary_writer = tf.compat.v2.summary.create_file_writer(
        eval_dir, flush_millis=summaries_flush_secs * 1000)
    eval_metrics = [
        tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
        tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes)
    ]

    global_step = tf.compat.v1.train.get_or_create_global_step()
    with tf.compat.v2.summary.record_if(
            lambda: tf.math.equal(global_step % summary_interval, 0)):
        if observations_whitelist is not None:
            env_wrappers = [
                functools.partial(
                    wrappers.FlattenObservationsWrapper,
                    observations_whitelist=[observations_whitelist])
            ]
        else:
            env_wrappers = []

        tf_env = tf_py_environment.TFPyEnvironment(
            suite_dm_control.load(env_name,
                                  task_name,
                                  env_wrappers=env_wrappers))
        eval_tf_env = tf_py_environment.TFPyEnvironment(
            suite_dm_control.load(env_name,
                                  task_name,
                                  env_wrappers=env_wrappers))

        actor_net = actor_rnn_network.ActorRnnNetwork(
            tf_env.time_step_spec().observation,
            tf_env.action_spec(),
            input_fc_layer_params=actor_fc_layers,
            lstm_size=actor_lstm_size,
            output_fc_layer_params=actor_output_fc_layers)

        critic_net_input_specs = (tf_env.time_step_spec().observation,
                                  tf_env.action_spec())

        critic_net = critic_rnn_network.CriticRnnNetwork(
            critic_net_input_specs,
            observation_fc_layer_params=critic_obs_fc_layers,
            action_fc_layer_params=critic_action_fc_layers,
            joint_fc_layer_params=critic_joint_fc_layers,
            lstm_size=critic_lstm_size,
            output_fc_layer_params=critic_output_fc_layers,
        )

        tf_agent = ddpg_agent.DdpgAgent(
            tf_env.time_step_spec(),
            tf_env.action_spec(),
            actor_network=actor_net,
            critic_network=critic_net,
            actor_optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=actor_learning_rate),
            critic_optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=critic_learning_rate),
            ou_stddev=ou_stddev,
            ou_damping=ou_damping,
            target_update_tau=target_update_tau,
            target_update_period=target_update_period,
            dqda_clipping=dqda_clipping,
            td_errors_loss_fn=td_errors_loss_fn,
            gamma=gamma,
            reward_scale_factor=reward_scale_factor,
            gradient_clipping=gradient_clipping,
            debug_summaries=debug_summaries,
            summarize_grads_and_vars=summarize_grads_and_vars)
        tf_agent.initialize()

        train_metrics = [
            tf_metrics.NumberOfEpisodes(),
            tf_metrics.EnvironmentSteps(),
            tf_metrics.AverageReturnMetric(),
            tf_metrics.AverageEpisodeLengthMetric(),
        ]

        eval_policy = tf_agent.policy
        collect_policy = tf_agent.collect_policy

        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            tf_agent.collect_data_spec,
            batch_size=tf_env.batch_size,
            max_length=replay_buffer_capacity)

        initial_collect_driver = dynamic_episode_driver.DynamicEpisodeDriver(
            tf_env,
            collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_episodes=initial_collect_episodes)

        collect_driver = dynamic_episode_driver.DynamicEpisodeDriver(
            tf_env,
            collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_episodes=collect_episodes_per_iteration)

        if use_tf_functions:
            initial_collect_driver.run = common.function(
                initial_collect_driver.run)
            collect_driver.run = common.function(collect_driver.run)
            tf_agent.train = common.function(tf_agent.train)

        # Collect initial replay data.
        logging.info(
            'Initializing replay buffer by collecting experience for %d episodes '
            'with a random policy.', initial_collect_episodes)
        initial_collect_driver.run()

        results = metric_utils.eager_compute(
            eval_metrics,
            eval_tf_env,
            eval_policy,
            num_episodes=num_eval_episodes,
            train_step=global_step,
            summary_writer=eval_summary_writer,
            summary_prefix='Metrics',
        )
        if eval_metrics_callback is not None:
            eval_metrics_callback(results, global_step.numpy())
        metric_utils.log_metrics(eval_metrics)

        time_step = None
        policy_state = collect_policy.get_initial_state(tf_env.batch_size)

        timed_at_step = global_step.numpy()
        time_acc = 0

        # Dataset generates trajectories with shape [BxTx...]
        dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                           sample_batch_size=batch_size,
                                           num_steps=train_sequence_length +
                                           1).prefetch(3)
        iterator = iter(dataset)

        for _ in range(num_iterations):
            start_time = time.time()
            time_step, policy_state = collect_driver.run(
                time_step=time_step,
                policy_state=policy_state,
            )
            for _ in range(train_steps_per_iteration):
                experience, _ = next(iterator)
                train_loss = tf_agent.train(experience,
                                            train_step_counter=global_step)
            time_acc += time.time() - start_time

            if global_step.numpy() % log_interval == 0:
                logging.info('step = %d, loss = %f', global_step.numpy(),
                             train_loss.loss)
                steps_per_sec = (global_step.numpy() -
                                 timed_at_step) / time_acc
                logging.info('%.3f steps/sec', steps_per_sec)
                tf.compat.v2.summary.scalar(name='global_steps_per_sec',
                                            data=steps_per_sec,
                                            step=global_step)
                timed_at_step = global_step.numpy()
                time_acc = 0

            for train_metric in train_metrics:
                train_metric.tf_summaries(train_step=global_step,
                                          step_metrics=train_metrics[:2])

            if global_step.numpy() % eval_interval == 0:
                results = metric_utils.eager_compute(
                    eval_metrics,
                    eval_tf_env,
                    eval_policy,
                    num_episodes=num_eval_episodes,
                    train_step=global_step,
                    summary_writer=eval_summary_writer,
                    summary_prefix='Metrics',
                )
                if eval_metrics_callback is not None:
                    eval_metrics_callback(results, global_step.numpy())
                metric_utils.log_metrics(eval_metrics)

        return train_loss
示例#16
0
def train_eval(
        root_dir,
        env_name='CartPole-v0',
        num_iterations=100000,
        train_sequence_length=1,
        # Params for QNetwork
        fc_layer_params=(100, ),
        # Params for QRnnNetwork
        input_fc_layer_params=(50, ),
        lstm_size=(20, ),
        output_fc_layer_params=(20, ),

        # Params for collect
        initial_collect_steps=1000,
        collect_steps_per_iteration=1,
        epsilon_greedy=0.1,
        replay_buffer_capacity=100000,
        # Params for target update
        target_update_tau=0.05,
        target_update_period=5,
        # Params for train
        train_steps_per_iteration=1,
        batch_size=64,
        learning_rate=1e-3,
        n_step_update=1,
        gamma=0.99,
        reward_scale_factor=1.0,
        gradient_clipping=None,
        use_tf_functions=True,
        # Params for eval
        num_eval_episodes=10,
        eval_interval=1000,
        # Params for checkpoints
        train_checkpoint_interval=10000,
        policy_checkpoint_interval=5000,
        rb_checkpoint_interval=20000,
        # Params for summaries and logging
        log_interval=1000,
        summary_interval=1000,
        summaries_flush_secs=10,
        debug_summaries=False,
        summarize_grads_and_vars=False,
        eval_metrics_callback=None):
    """A simple train and eval for DQN."""
    root_dir = os.path.expanduser(root_dir)
    train_dir = os.path.join(root_dir, 'train')
    eval_dir = os.path.join(root_dir, 'eval')

    train_summary_writer = tf.compat.v2.summary.create_file_writer(
        train_dir, flush_millis=summaries_flush_secs * 1000)
    train_summary_writer.set_as_default()

    eval_summary_writer = tf.compat.v2.summary.create_file_writer(
        eval_dir, flush_millis=summaries_flush_secs * 1000)
    eval_metrics = [
        tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
        tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes)
    ]

    global_step = tf.compat.v1.train.get_or_create_global_step()
    with tf.compat.v2.summary.record_if(
            lambda: tf.math.equal(global_step % summary_interval, 0)):
        tf_env = tf_py_environment.TFPyEnvironment(suite_gym.load(env_name))
        eval_tf_env = tf_py_environment.TFPyEnvironment(
            suite_gym.load(env_name))

        if train_sequence_length != 1 and n_step_update != 1:
            raise NotImplementedError(
                'train_eval does not currently support n-step updates with stateful '
                'networks (i.e., RNNs)')

        if train_sequence_length > 1:
            q_net = q_rnn_network.QRnnNetwork(
                tf_env.observation_spec(),
                tf_env.action_spec(),
                input_fc_layer_params=input_fc_layer_params,
                lstm_size=lstm_size,
                output_fc_layer_params=output_fc_layer_params)
        else:
            q_net = q_network.QNetwork(tf_env.observation_spec(),
                                       tf_env.action_spec(),
                                       fc_layer_params=fc_layer_params)
            train_sequence_length = n_step_update

        # TODO(b/127301657): Decay epsilon based on global step, cf. cl/188907839
        tf_agent = dqn_agent.DqnAgent(
            tf_env.time_step_spec(),
            tf_env.action_spec(),
            q_network=q_net,
            epsilon_greedy=epsilon_greedy,
            n_step_update=n_step_update,
            target_update_tau=target_update_tau,
            target_update_period=target_update_period,
            optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=learning_rate),
            td_errors_loss_fn=common.element_wise_squared_loss,
            gamma=gamma,
            reward_scale_factor=reward_scale_factor,
            gradient_clipping=gradient_clipping,
            debug_summaries=debug_summaries,
            summarize_grads_and_vars=summarize_grads_and_vars,
            train_step_counter=global_step)
        tf_agent.initialize()

        train_metrics = [
            tf_metrics.NumberOfEpisodes(),
            tf_metrics.EnvironmentSteps(),
            tf_metrics.AverageReturnMetric(),
            tf_metrics.AverageEpisodeLengthMetric(),
        ]

        eval_policy = tf_agent.policy
        collect_policy = tf_agent.collect_policy

        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            data_spec=tf_agent.collect_data_spec,
            batch_size=tf_env.batch_size,
            max_length=replay_buffer_capacity)

        collect_driver = dynamic_step_driver.DynamicStepDriver(
            tf_env,
            collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_steps=collect_steps_per_iteration)

        train_checkpointer = common.Checkpointer(
            ckpt_dir=train_dir,
            agent=tf_agent,
            global_step=global_step,
            metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'))
        policy_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
            train_dir, 'policy'),
                                                  policy=eval_policy,
                                                  global_step=global_step)
        rb_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
            train_dir, 'replay_buffer'),
                                              max_to_keep=1,
                                              replay_buffer=replay_buffer)

        train_checkpointer.initialize_or_restore()
        rb_checkpointer.initialize_or_restore()

        if use_tf_functions:
            # To speed up collect use common.function.
            collect_driver.run = common.function(collect_driver.run)
            tf_agent.train = common.function(tf_agent.train)

        initial_collect_policy = random_tf_policy.RandomTFPolicy(
            tf_env.time_step_spec(), tf_env.action_spec())

        # Collect initial replay data.
        logging.info(
            'Initializing replay buffer by collecting experience for %d steps with '
            'a random policy.', initial_collect_steps)
        dynamic_step_driver.DynamicStepDriver(
            tf_env,
            initial_collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_steps=initial_collect_steps).run()

        results = metric_utils.eager_compute(
            eval_metrics,
            eval_tf_env,
            eval_policy,
            num_episodes=num_eval_episodes,
            train_step=global_step,
            summary_writer=eval_summary_writer,
            summary_prefix='Metrics',
        )
        if eval_metrics_callback is not None:
            eval_metrics_callback(results, global_step.numpy())
        metric_utils.log_metrics(eval_metrics)

        time_step = None
        policy_state = collect_policy.get_initial_state(tf_env.batch_size)

        timed_at_step = global_step.numpy()
        time_acc = 0

        # Dataset generates trajectories with shape [Bx2x...]
        dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                           sample_batch_size=batch_size,
                                           num_steps=train_sequence_length +
                                           1).prefetch(3)
        iterator = iter(dataset)

        def train_step():
            experience, _ = next(iterator)
            return tf_agent.train(experience)

        if use_tf_functions:
            train_step = common.function(train_step)

        for _ in range(num_iterations):
            start_time = time.time()
            time_step, policy_state = collect_driver.run(
                time_step=time_step,
                policy_state=policy_state,
            )
            for _ in range(train_steps_per_iteration):
                train_loss = train_step()
            time_acc += time.time() - start_time

            if global_step.numpy() % log_interval == 0:
                logging.info('step = %d, loss = %f', global_step.numpy(),
                             train_loss.loss)
                steps_per_sec = (global_step.numpy() -
                                 timed_at_step) / time_acc
                logging.info('%.3f steps/sec', steps_per_sec)
                tf.compat.v2.summary.scalar(name='global_steps_per_sec',
                                            data=steps_per_sec,
                                            step=global_step)
                timed_at_step = global_step.numpy()
                time_acc = 0

            for train_metric in train_metrics:
                train_metric.tf_summaries(train_step=global_step,
                                          step_metrics=train_metrics[:2])

            if global_step.numpy() % train_checkpoint_interval == 0:
                train_checkpointer.save(global_step=global_step.numpy())

            if global_step.numpy() % policy_checkpoint_interval == 0:
                policy_checkpointer.save(global_step=global_step.numpy())

            if global_step.numpy() % rb_checkpoint_interval == 0:
                rb_checkpointer.save(global_step=global_step.numpy())

            if global_step.numpy() % eval_interval == 0:
                results = metric_utils.eager_compute(
                    eval_metrics,
                    eval_tf_env,
                    eval_policy,
                    num_episodes=num_eval_episodes,
                    train_step=global_step,
                    summary_writer=eval_summary_writer,
                    summary_prefix='Metrics',
                )
                if eval_metrics_callback is not None:
                    eval_metrics_callback(results, global_step.numpy())
                metric_utils.log_metrics(eval_metrics)
        return train_loss
示例#17
0
def train_eval(
    root_dir,
    random_seed=None,
    env_name='sawyer_push',
    eval_env_name=None,
    env_load_fn=get_env,
    max_episode_steps=1000,
    eval_episode_steps=1000,
    # The SAC paper reported:
    # Hopper and Cartpole results up to 1000000 iters,
    # Humanoid results up to 10000000 iters,
    # Other mujoco tasks up to 3000000 iters.
    num_iterations=3000000,
    actor_fc_layers=(256, 256),
    critic_obs_fc_layers=None,
    critic_action_fc_layers=None,
    critic_joint_fc_layers=(256, 256),
    # Params for collect
    # Follow https://github.com/haarnoja/sac/blob/master/examples/variants.py
    # HalfCheetah and Ant take 10000 initial collection steps.
    # Other mujoco tasks take 1000.
    # Different choices roughly keep the initial episodes about the same.
    initial_collect_steps=10000,
    collect_steps_per_iteration=1,
    replay_buffer_capacity=1000000,
    # Params for target update
    target_update_tau=0.005,
    target_update_period=1,
    # Params for train
    reset_goal_frequency=1000,  # virtual episode size for reset-free training
    train_steps_per_iteration=1,
    batch_size=256,
    actor_learning_rate=3e-4,
    critic_learning_rate=3e-4,
    alpha_learning_rate=3e-4,
    # reset-free parameters
    use_minimum=True,
    reset_lagrange_learning_rate=3e-4,
    value_threshold=None,
    td_errors_loss_fn=tf.math.squared_difference,
    gamma=0.99,
    reward_scale_factor=0.1,
    # Td3 parameters
    actor_update_period=1,
    exploration_noise_std=0.1,
    target_policy_noise=0.1,
    target_policy_noise_clip=0.1,
    dqda_clipping=None,
    gradient_clipping=None,
    use_tf_functions=True,
    # Params for eval
    num_eval_episodes=10,
    eval_interval=10000,
    # Params for summaries and logging
    train_checkpoint_interval=10000,
    policy_checkpoint_interval=5000,
    rb_checkpoint_interval=50000,
    # video recording for the environment
    video_record_interval=10000,
    num_videos=0,
    log_interval=1000,
    summary_interval=1000,
    summaries_flush_secs=10,
    debug_summaries=False,
    summarize_grads_and_vars=False,
    eval_metrics_callback=None):

  start_time = time.time()

  root_dir = os.path.expanduser(root_dir)
  train_dir = os.path.join(root_dir, 'train')
  eval_dir = os.path.join(root_dir, 'eval')
  video_dir = os.path.join(eval_dir, 'videos')

  train_summary_writer = tf.compat.v2.summary.create_file_writer(
      train_dir, flush_millis=summaries_flush_secs * 1000)
  train_summary_writer.set_as_default()

  eval_summary_writer = tf.compat.v2.summary.create_file_writer(
      eval_dir, flush_millis=summaries_flush_secs * 1000)
  eval_metrics = [
      tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
      tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes),
  ]

  global_step = tf.compat.v1.train.get_or_create_global_step()
  with tf.compat.v2.summary.record_if(
      lambda: tf.math.equal(global_step % summary_interval, 0)):
    if random_seed is not None:
      tf.compat.v1.set_random_seed(random_seed)
    env, env_train_metrics, env_eval_metrics, aux_info = env_load_fn(
        name=env_name,
        max_episode_steps=None,
        gym_env_wrappers=(functools.partial(
            reset_free_wrapper.ResetFreeWrapper,
            reset_goal_frequency=reset_goal_frequency,
            full_reset_frequency=max_episode_steps),))

    tf_env = tf_py_environment.TFPyEnvironment(env)
    eval_env_name = eval_env_name or env_name
    eval_tf_env = tf_py_environment.TFPyEnvironment(
        env_load_fn(name=eval_env_name,
                    max_episode_steps=eval_episode_steps)[0])

    eval_metrics += env_eval_metrics

    time_step_spec = tf_env.time_step_spec()
    observation_spec = time_step_spec.observation
    action_spec = tf_env.action_spec()

    if FLAGS.agent_type == 'sac':
      actor_net = actor_distribution_network.ActorDistributionNetwork(
          observation_spec,
          action_spec,
          fc_layer_params=actor_fc_layers,
          continuous_projection_net=functools.partial(
              tanh_normal_projection_network.TanhNormalProjectionNetwork,
              std_transform=std_clip_transform),
          name='forward_actor')
      critic_net = critic_network.CriticNetwork(
          (observation_spec, action_spec),
          observation_fc_layer_params=critic_obs_fc_layers,
          action_fc_layer_params=critic_action_fc_layers,
          joint_fc_layer_params=critic_joint_fc_layers,
          kernel_initializer='glorot_uniform',
          last_kernel_initializer='glorot_uniform',
          name='forward_critic')

      tf_agent = SacAgent(
          time_step_spec,
          action_spec,
          num_action_samples=FLAGS.num_action_samples,
          actor_network=actor_net,
          critic_network=critic_net,
          actor_optimizer=tf.compat.v1.train.AdamOptimizer(
              learning_rate=actor_learning_rate),
          critic_optimizer=tf.compat.v1.train.AdamOptimizer(
              learning_rate=critic_learning_rate),
          alpha_optimizer=tf.compat.v1.train.AdamOptimizer(
              learning_rate=alpha_learning_rate),
          target_update_tau=target_update_tau,
          target_update_period=target_update_period,
          td_errors_loss_fn=td_errors_loss_fn,
          gamma=gamma,
          reward_scale_factor=reward_scale_factor,
          gradient_clipping=gradient_clipping,
          debug_summaries=debug_summaries,
          summarize_grads_and_vars=summarize_grads_and_vars,
          train_step_counter=global_step,
          name='forward_agent')

      actor_net_rev = actor_distribution_network.ActorDistributionNetwork(
          observation_spec,
          action_spec,
          fc_layer_params=actor_fc_layers,
          continuous_projection_net=functools.partial(
              tanh_normal_projection_network.TanhNormalProjectionNetwork,
              std_transform=std_clip_transform),
          name='reverse_actor')

      critic_net_rev = critic_network.CriticNetwork(
          (observation_spec, action_spec),
          observation_fc_layer_params=critic_obs_fc_layers,
          action_fc_layer_params=critic_action_fc_layers,
          joint_fc_layer_params=critic_joint_fc_layers,
          kernel_initializer='glorot_uniform',
          last_kernel_initializer='glorot_uniform',
          name='reverse_critic')

      tf_agent_rev = SacAgent(
          time_step_spec,
          action_spec,
          num_action_samples=FLAGS.num_action_samples,
          actor_network=actor_net_rev,
          critic_network=critic_net_rev,
          actor_optimizer=tf.compat.v1.train.AdamOptimizer(
              learning_rate=actor_learning_rate),
          critic_optimizer=tf.compat.v1.train.AdamOptimizer(
              learning_rate=critic_learning_rate),
          alpha_optimizer=tf.compat.v1.train.AdamOptimizer(
              learning_rate=alpha_learning_rate),
          target_update_tau=target_update_tau,
          target_update_period=target_update_period,
          td_errors_loss_fn=td_errors_loss_fn,
          gamma=gamma,
          reward_scale_factor=reward_scale_factor,
          gradient_clipping=gradient_clipping,
          debug_summaries=debug_summaries,
          summarize_grads_and_vars=summarize_grads_and_vars,
          train_step_counter=global_step,
          name='reverse_agent')

    elif FLAGS.agent_type == 'td3':
      actor_net = actor_network.ActorNetwork(
          tf_env.time_step_spec().observation,
          tf_env.action_spec(),
          fc_layer_params=actor_fc_layers,
      )
      critic_net = critic_network.CriticNetwork(
          (observation_spec, action_spec),
          observation_fc_layer_params=critic_obs_fc_layers,
          action_fc_layer_params=critic_action_fc_layers,
          joint_fc_layer_params=critic_joint_fc_layers,
          kernel_initializer='glorot_uniform',
          last_kernel_initializer='glorot_uniform')

      tf_agent = Td3Agent(
          tf_env.time_step_spec(),
          tf_env.action_spec(),
          actor_network=actor_net,
          critic_network=critic_net,
          actor_optimizer=tf.compat.v1.train.AdamOptimizer(
              learning_rate=actor_learning_rate),
          critic_optimizer=tf.compat.v1.train.AdamOptimizer(
              learning_rate=critic_learning_rate),
          exploration_noise_std=exploration_noise_std,
          target_update_tau=target_update_tau,
          target_update_period=target_update_period,
          actor_update_period=actor_update_period,
          dqda_clipping=dqda_clipping,
          td_errors_loss_fn=td_errors_loss_fn,
          gamma=gamma,
          reward_scale_factor=reward_scale_factor,
          target_policy_noise=target_policy_noise,
          target_policy_noise_clip=target_policy_noise_clip,
          gradient_clipping=gradient_clipping,
          debug_summaries=debug_summaries,
          summarize_grads_and_vars=summarize_grads_and_vars,
          train_step_counter=global_step,
      )

    tf_agent.initialize()
    tf_agent_rev.initialize()

    if FLAGS.use_reset_goals:
      # distance to initial state distribution
      initial_state_distance = state_distribution_distance.L2Distance(
          initial_state_shape=aux_info['reset_state_shape'])
      initial_state_distance.update(
          tf.constant(aux_info['reset_states'], dtype=tf.float32),
          update_type='complete')

      if use_tf_functions:
        initial_state_distance.distance = common.function(
            initial_state_distance.distance)
        tf_agent.compute_value = common.function(tf_agent.compute_value)

      # initialize reset / practice goal proposer
      if reset_lagrange_learning_rate > 0:
        reset_goal_generator = ResetGoalGenerator(
            goal_dim=aux_info['reset_state_shape'][0],
            num_reset_candidates=FLAGS.num_reset_candidates,
            compute_value_fn=tf_agent.compute_value,
            distance_fn=initial_state_distance,
            use_minimum=use_minimum,
            value_threshold=value_threshold,
            optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=reset_lagrange_learning_rate),
            name='reset_goal_generator')
      else:
        reset_goal_generator = FixedResetGoal(
            distance_fn=initial_state_distance)

      # if use_tf_functions:
      #   reset_goal_generator.get_reset_goal = common.function(
      #       reset_goal_generator.get_reset_goal)

      # modify the reset-free wrapper to use the reset goal generator
      tf_env.pyenv.envs[0].set_reset_goal_fn(
          reset_goal_generator.get_reset_goal)

    # Make the replay buffer.
    replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
        data_spec=tf_agent.collect_data_spec,
        batch_size=1,
        max_length=replay_buffer_capacity)
    replay_observer = [replay_buffer.add_batch]

    replay_buffer_rev = tf_uniform_replay_buffer.TFUniformReplayBuffer(
        data_spec=tf_agent_rev.collect_data_spec,
        batch_size=1,
        max_length=replay_buffer_capacity)
    replay_observer_rev = [replay_buffer_rev.add_batch]

    # initialize metrics and observers
    train_metrics = [
        tf_metrics.NumberOfEpisodes(),
        tf_metrics.EnvironmentSteps(),
        tf_metrics.AverageReturnMetric(
            buffer_size=num_eval_episodes, batch_size=tf_env.batch_size),
        tf_metrics.AverageEpisodeLengthMetric(
            buffer_size=num_eval_episodes, batch_size=tf_env.batch_size),
    ]
    train_metrics += env_train_metrics
    train_metrics_rev = [
        tf_metrics.NumberOfEpisodes(name='NumberOfEpisodesRev'),
        tf_metrics.EnvironmentSteps(name='EnvironmentStepsRev'),
        tf_metrics.AverageReturnMetric(
            name='AverageReturnRev',
            buffer_size=num_eval_episodes,
            batch_size=tf_env.batch_size),
        tf_metrics.AverageEpisodeLengthMetric(
            name='AverageEpisodeLengthRev',
            buffer_size=num_eval_episodes,
            batch_size=tf_env.batch_size),
    ]
    train_metrics_rev += aux_info['train_metrics_rev']

    eval_policy = greedy_policy.GreedyPolicy(tf_agent.policy)
    eval_py_policy = py_tf_eager_policy.PyTFEagerPolicy(
        tf_agent.policy, use_tf_function=True)

    initial_collect_policy = random_tf_policy.RandomTFPolicy(
        tf_env.time_step_spec(), tf_env.action_spec())
    initial_collect_policy_rev = random_tf_policy.RandomTFPolicy(
        tf_env.time_step_spec(), tf_env.action_spec())
    collect_policy = tf_agent.collect_policy
    collect_policy_rev = tf_agent_rev.collect_policy

    train_checkpointer = common.Checkpointer(
        ckpt_dir=os.path.join(train_dir, 'forward'),
        agent=tf_agent,
        global_step=global_step,
        metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'))
    policy_checkpointer = common.Checkpointer(
        ckpt_dir=os.path.join(train_dir, 'forward', 'policy'),
        policy=eval_policy,
        global_step=global_step)
    rb_checkpointer = common.Checkpointer(
        ckpt_dir=os.path.join(train_dir, 'replay_buffer'),
        max_to_keep=1,
        replay_buffer=replay_buffer)
    # reverse policy savers
    train_checkpointer_rev = common.Checkpointer(
        ckpt_dir=os.path.join(train_dir, 'reverse'),
        agent=tf_agent_rev,
        global_step=global_step,
        metrics=metric_utils.MetricsGroup(train_metrics_rev,
                                          'train_metrics_rev'))
    rb_checkpointer_rev = common.Checkpointer(
        ckpt_dir=os.path.join(train_dir, 'replay_buffer_rev'),
        max_to_keep=1,
        replay_buffer=replay_buffer_rev)

    train_checkpointer.initialize_or_restore()
    rb_checkpointer.initialize_or_restore()
    train_checkpointer_rev.initialize_or_restore()
    rb_checkpointer_rev.initialize_or_restore()

    collect_driver = dynamic_step_driver.DynamicStepDriver(
        tf_env,
        collect_policy,
        observers=replay_observer + train_metrics,
        num_steps=collect_steps_per_iteration)
    collect_driver_rev = dynamic_step_driver.DynamicStepDriver(
        tf_env,
        collect_policy_rev,
        observers=replay_observer_rev + train_metrics_rev,
        num_steps=collect_steps_per_iteration)

    if use_tf_functions:
      collect_driver.run = common.function(collect_driver.run)
      collect_driver_rev.run = common.function(collect_driver_rev.run)
      tf_agent.train = common.function(tf_agent.train)
      tf_agent_rev.train = common.function(tf_agent_rev.train)

    if replay_buffer.num_frames() == 0:
      initial_collect_driver = dynamic_step_driver.DynamicStepDriver(
          tf_env,
          initial_collect_policy,
          observers=replay_observer + train_metrics,
          num_steps=1)
      initial_collect_driver_rev = dynamic_step_driver.DynamicStepDriver(
          tf_env,
          initial_collect_policy_rev,
          observers=replay_observer_rev + train_metrics_rev,
          num_steps=1)
      # does not work for some reason
      if use_tf_functions:
        initial_collect_driver.run = common.function(initial_collect_driver.run)
        initial_collect_driver_rev.run = common.function(
            initial_collect_driver_rev.run)

      # Collect initial replay data.
      logging.info(
          'Initializing replay buffer by collecting experience for %d steps with '
          'a random policy.', initial_collect_steps)
      for iter_idx_initial in range(initial_collect_steps):
        if tf_env.pyenv.envs[0]._forward_or_reset_goal:
          initial_collect_driver.run()
        else:
          initial_collect_driver_rev.run()
        if FLAGS.use_reset_goals and iter_idx_initial % FLAGS.reset_goal_frequency == 0:
          if replay_buffer_rev.num_frames():
            reset_candidates_from_forward_buffer = replay_buffer.get_next(
                sample_batch_size=FLAGS.num_reset_candidates // 2)[0]
            reset_candidates_from_reverse_buffer = replay_buffer_rev.get_next(
                sample_batch_size=FLAGS.num_reset_candidates // 2)[0]
            flat_forward_tensors = tf.nest.flatten(
                reset_candidates_from_forward_buffer)
            flat_reverse_tensors = tf.nest.flatten(
                reset_candidates_from_reverse_buffer)
            concatenated_tensors = [
                tf.concat([x, y], axis=0)
                for x, y in zip(flat_forward_tensors, flat_reverse_tensors)
            ]
            reset_candidates = tf.nest.pack_sequence_as(
                reset_candidates_from_forward_buffer, concatenated_tensors)
            tf_env.pyenv.envs[0].set_reset_candidates(reset_candidates)
          else:
            reset_candidates = replay_buffer.get_next(
                sample_batch_size=FLAGS.num_reset_candidates)[0]
            tf_env.pyenv.envs[0].set_reset_candidates(reset_candidates)

    results = metric_utils.eager_compute(
        eval_metrics,
        eval_tf_env,
        eval_policy,
        num_episodes=num_eval_episodes,
        train_step=global_step,
        summary_writer=eval_summary_writer,
        summary_prefix='Metrics',
    )
    if eval_metrics_callback is not None:
      eval_metrics_callback(results, global_step.numpy())
    metric_utils.log_metrics(eval_metrics)

    time_step = None
    policy_state = collect_policy.get_initial_state(tf_env.batch_size)

    timed_at_step = global_step.numpy()
    time_acc = 0

    # Prepare replay buffer as dataset with invalid transitions filtered.
    def _filter_invalid_transition(trajectories, unused_arg1):
      return ~trajectories.is_boundary()[0]

    dataset = replay_buffer.as_dataset(
        sample_batch_size=batch_size, num_steps=2).unbatch().filter(
            _filter_invalid_transition).batch(batch_size).prefetch(5)
    # Dataset generates trajectories with shape [Bx2x...]
    iterator = iter(dataset)

    def train_step():
      experience, _ = next(iterator)
      return tf_agent.train(experience)

    dataset_rev = replay_buffer_rev.as_dataset(
        sample_batch_size=batch_size, num_steps=2).unbatch().filter(
            _filter_invalid_transition).batch(batch_size).prefetch(5)
    # Dataset generates trajectories with shape [Bx2x...]
    iterator_rev = iter(dataset_rev)

    def train_step_rev():
      experience_rev, _ = next(iterator_rev)
      return tf_agent_rev.train(experience_rev)

    if use_tf_functions:
      train_step = common.function(train_step)
      train_step_rev = common.function(train_step_rev)

    # manual data save for plotting utils
    np_on_cns_save(os.path.join(eval_dir, 'eval_interval.npy'), eval_interval)
    try:
      average_eval_return = np_on_cns_load(
          os.path.join(eval_dir, 'average_eval_return.npy')).tolist()
      average_eval_success = np_on_cns_load(
          os.path.join(eval_dir, 'average_eval_success.npy')).tolist()
    except:
      average_eval_return = []
      average_eval_success = []

    print('initialization_time:', time.time() - start_time)
    for iter_idx in range(num_iterations):
      start_time = time.time()
      if tf_env.pyenv.envs[0]._forward_or_reset_goal:
        time_step, policy_state = collect_driver.run(
            time_step=time_step,
            policy_state=policy_state,
        )
      else:
        time_step, policy_state = collect_driver_rev.run(
            time_step=time_step,
            policy_state=policy_state,
        )

      # reset goal generator updates
      if FLAGS.use_reset_goals and iter_idx % (
          FLAGS.reset_goal_frequency * collect_steps_per_iteration) == 0:
        reset_candidates_from_forward_buffer = replay_buffer.get_next(
            sample_batch_size=FLAGS.num_reset_candidates // 2)[0]
        reset_candidates_from_reverse_buffer = replay_buffer_rev.get_next(
            sample_batch_size=FLAGS.num_reset_candidates // 2)[0]
        flat_forward_tensors = tf.nest.flatten(
            reset_candidates_from_forward_buffer)
        flat_reverse_tensors = tf.nest.flatten(
            reset_candidates_from_reverse_buffer)
        concatenated_tensors = [
            tf.concat([x, y], axis=0)
            for x, y in zip(flat_forward_tensors, flat_reverse_tensors)
        ]
        reset_candidates = tf.nest.pack_sequence_as(
            reset_candidates_from_forward_buffer, concatenated_tensors)
        tf_env.pyenv.envs[0].set_reset_candidates(reset_candidates)
        if reset_lagrange_learning_rate > 0:
          reset_goal_generator.update_lagrange_multipliers()

      for _ in range(train_steps_per_iteration):
        train_loss_rev = train_step_rev()
        train_loss = train_step()

      time_acc += time.time() - start_time

      global_step_val = global_step.numpy()

      if global_step_val % log_interval == 0:
        logging.info('step = %d, loss = %f', global_step_val, train_loss.loss)
        logging.info('step = %d, loss_rev = %f', global_step_val,
                     train_loss_rev.loss)
        steps_per_sec = (global_step_val - timed_at_step) / time_acc
        logging.info('%.3f steps/sec', steps_per_sec)
        tf.compat.v2.summary.scalar(
            name='global_steps_per_sec', data=steps_per_sec, step=global_step)
        timed_at_step = global_step_val
        time_acc = 0

      for train_metric in train_metrics:
        if 'Heatmap' in train_metric.name:
          if global_step_val % summary_interval == 0:
            train_metric.tf_summaries(
                train_step=global_step, step_metrics=train_metrics[:2])
        else:
          train_metric.tf_summaries(
              train_step=global_step, step_metrics=train_metrics[:2])

      for train_metric in train_metrics_rev:
        if 'Heatmap' in train_metric.name:
          if global_step_val % summary_interval == 0:
            train_metric.tf_summaries(
                train_step=global_step, step_metrics=train_metrics_rev[:2])
        else:
          train_metric.tf_summaries(
              train_step=global_step, step_metrics=train_metrics_rev[:2])

      if global_step_val % summary_interval == 0 and FLAGS.use_reset_goals:
        reset_goal_generator.update_summaries(step_counter=global_step)

      if global_step_val % eval_interval == 0:
        results = metric_utils.eager_compute(
            eval_metrics,
            eval_tf_env,
            eval_policy,
            num_episodes=num_eval_episodes,
            train_step=global_step,
            summary_writer=eval_summary_writer,
            summary_prefix='Metrics',
        )
        if eval_metrics_callback is not None:
          eval_metrics_callback(results, global_step_val)
        metric_utils.log_metrics(eval_metrics)

        # numpy saves for plotting
        average_eval_return.append(results['AverageReturn'].numpy())
        average_eval_success.append(results['EvalSuccessfulEpisodes'].numpy())
        np_on_cns_save(
            os.path.join(eval_dir, 'average_eval_return.npy'),
            average_eval_return)
        np_on_cns_save(
            os.path.join(eval_dir, 'average_eval_success.npy'),
            average_eval_success)

      if global_step_val % train_checkpoint_interval == 0:
        train_checkpointer.save(global_step=global_step_val)
        train_checkpointer_rev.save(global_step=global_step_val)

      if global_step_val % policy_checkpoint_interval == 0:
        policy_checkpointer.save(global_step=global_step_val)

      if global_step_val % rb_checkpoint_interval == 0:
        rb_checkpointer.save(global_step=global_step_val)
        rb_checkpointer_rev.save(global_step=global_step_val)

      if global_step_val % video_record_interval == 0:
        for video_idx in range(num_videos):
          video_name = os.path.join(video_dir, str(global_step_val),
                                    'video_' + str(video_idx) + '.mp4')
          record_video(
              lambda: env_load_fn(  # pylint: disable=g-long-lambda
                  name=env_name,
                  max_episode_steps=max_episode_steps)[0],
              video_name,
              eval_py_policy,
              max_episode_length=eval_episode_steps)

    return train_loss
示例#18
0
def run():
    tf_env = tf_py_environment.TFPyEnvironment(SnakeEnv())
    eval_env = tf_py_environment.TFPyEnvironment(SnakeEnv(step_limit=50))

    q_net = q_network.QNetwork(
        tf_env.observation_spec(),
        tf_env.action_spec(),
        conv_layer_params=(),
        fc_layer_params=(512, 256, 128),
    )

    optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
    global_counter = tf.compat.v1.train.get_or_create_global_step()

    agent = dqn_agent.DqnAgent(
        tf_env.time_step_spec(),
        tf_env.action_spec(),
        q_network=q_net,
        optimizer=optimizer,
        td_errors_loss_fn=common.element_wise_squared_loss,
        train_step_counter=global_counter,
        gamma=0.95,
        epsilon_greedy=0.1,
        n_step_update=1,
    )

    root_dir = os.path.join('/tf-logs', 'snake')
    train_dir = os.path.join(root_dir, 'train')
    eval_dir = os.path.join(root_dir, 'eval')

    agent.initialize()

    train_metrics = [
        tf_metrics.NumberOfEpisodes(),
        tf_metrics.EnvironmentSteps(),
        tf_metrics.AverageReturnMetric(),
        tf_metrics.AverageEpisodeLengthMetric(),
    ]

    replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
        data_spec=agent.collect_data_spec,
        batch_size=tf_env.batch_size,
        max_length=replay_buffer_max_length,
    )

    collect_driver = dynamic_step_driver.DynamicStepDriver(
        tf_env,
        agent.collect_policy,
        observers=[replay_buffer.add_batch] + train_metrics,
        num_steps=collect_steps_per_iteration,
    )

    train_checkpointer = common.Checkpointer(
        ckpt_dir=train_dir,
        agent=agent,
        global_step=global_counter,
        metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'),
    )

    policy_checkpointer = common.Checkpointer(
        ckpt_dir=os.path.join(train_dir, 'policy'),
        policy=agent.policy,
        global_step=global_counter,
    )

    rb_checkpointer = common.Checkpointer(
        ckpt_dir=os.path.join(train_dir, 'replay_buffer'),
        max_to_keep=1,
        replay_buffer=replay_buffer,
    )

    train_checkpointer.initialize_or_restore()
    rb_checkpointer.initialize_or_restore()

    collect_driver.run = common.function(collect_driver.run)
    agent.train = common.function(agent.train)

    random_policy = random_tf_policy.RandomTFPolicy(tf_env.time_step_spec(),
                                                    tf_env.action_spec())

    if replay_buffer.num_frames() >= initial_collect_steps:
        logging.info("We loaded memories, not doing random seed")
    else:
        logging.info("Capturing %d steps to seed with random memories",
                     initial_collect_steps)

        dynamic_step_driver.DynamicStepDriver(
            tf_env,
            random_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_steps=initial_collect_steps).run()

    train_summary_writer = tf.summary.create_file_writer(train_dir)
    train_summary_writer.set_as_default()

    avg_returns = []
    avg_return_metric = tf_metrics.AverageReturnMetric(
        buffer_size=num_eval_episodes)
    eval_metrics = [
        avg_return_metric,
        tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes),
    ]
    logging.info("Running initial evaluation")
    results = metric_utils.eager_compute(
        eval_metrics,
        eval_env,
        agent.policy,
        num_episodes=num_eval_episodes,
        train_step=global_counter,
        summary_writer=tf.summary.create_file_writer(eval_dir),
        summary_prefix='Metrics',
    )
    avg_returns.append(
        (global_counter.numpy(), avg_return_metric.result().numpy()))
    metric_utils.log_metrics(eval_metrics)

    time_step = None
    policy_state = agent.collect_policy.get_initial_state(tf_env.batch_size)

    timed_at_step = global_counter.numpy()
    time_acc = 0

    dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                       sample_batch_size=batch_size,
                                       num_steps=2).prefetch(3)

    iterator = iter(dataset)

    @common.function
    def train_step():
        experience, _ = next(iterator)
        return agent.train(experience)

    for _ in range(num_iterations):
        start_time = time.time()
        time_step, policy_state = collect_driver.run(
            time_step=time_step,
            policy_state=policy_state,
        )

        for _ in range(train_steps_per_iteration):
            train_loss = train_step()
        time_acc += time.time() - start_time

        step = global_counter.numpy()

        if step % log_interval == 0:
            logging.info("step = %d, loss = %f", step, train_loss.loss)
            steps_per_sec = (step - timed_at_step) / time_acc
            logging.info("%.3f steps/sec", steps_per_sec)
            timed_at_step = step
            time_acc = 0

        for train_metric in train_metrics:
            train_metric.tf_summaries(train_step=global_counter,
                                      step_metrics=train_metrics[:2])

        if step % train_checkpoint_interval == 0:
            train_checkpointer.save(global_step=step)

        if step % policy_checkpoint_interval == 0:
            policy_checkpointer.save(global_step=step)

        if step % rb_checkpoint_interval == 0:
            rb_checkpointer.save(global_step=step)

        if step % capture_interval == 0:
            print("Capturing run:")
            capture_run(os.path.join(root_dir, "snake" + str(step) + ".mp4"),
                        eval_env, agent.policy)

        if step % eval_interval == 0:
            print("EVALUTION TIME:")
            results = metric_utils.eager_compute(
                eval_metrics,
                eval_env,
                agent.policy,
                num_episodes=num_eval_episodes,
                train_step=global_counter,
                summary_writer=tf.summary.create_file_writer(eval_dir),
                summary_prefix='Metrics',
            )
            metric_utils.log_metrics(eval_metrics)
            avg_returns.append(
                (global_counter.numpy(), avg_return_metric.result().numpy()))
def train_eval(
    root_dir,
    experiment_name,  # experiment name
    env_name='carla-v0',
    agent_name='sac',  # agent's name
    num_iterations=int(1e7),
    actor_fc_layers=(256, 256),
    critic_obs_fc_layers=None,
    critic_action_fc_layers=None,
    critic_joint_fc_layers=(256, 256),
    model_network_ctor_type='non-hierarchical',  # model net
    input_names=['camera', 'lidar'],  # names for inputs
    mask_names=['birdeye'],  # names for masks
    preprocessing_combiner=tf.keras.layers.Add(
    ),  # takes a flat list of tensors and combines them
    actor_lstm_size=(40, ),  # lstm size for actor
    critic_lstm_size=(40, ),  # lstm size for critic
    actor_output_fc_layers=(100, ),  # lstm output
    critic_output_fc_layers=(100, ),  # lstm output
    epsilon_greedy=0.1,  # exploration parameter for DQN
    q_learning_rate=1e-3,  # q learning rate for DQN
    ou_stddev=0.2,  # exploration paprameter for DDPG
    ou_damping=0.15,  # exploration parameter for DDPG
    dqda_clipping=None,  # for DDPG
    exploration_noise_std=0.1,  # exploration paramter for td3
    actor_update_period=2,  # for td3
    # Params for collect
    initial_collect_steps=1000,
    collect_steps_per_iteration=1,
    replay_buffer_capacity=int(1e5),
    # Params for target update
    target_update_tau=0.005,
    target_update_period=1,
    # Params for train
    train_steps_per_iteration=1,
    initial_model_train_steps=100000,  # initial model training
    batch_size=256,
    model_batch_size=32,  # model training batch size
    sequence_length=4,  # number of timesteps to train model
    actor_learning_rate=3e-4,
    critic_learning_rate=3e-4,
    alpha_learning_rate=3e-4,
    model_learning_rate=1e-4,  # learning rate for model training
    td_errors_loss_fn=tf.losses.mean_squared_error,
    gamma=0.99,
    reward_scale_factor=1.0,
    gradient_clipping=None,
    # Params for eval
    num_eval_episodes=10,
    eval_interval=10000,
    # Params for summaries and logging
    num_images_per_summary=1,  # images for each summary
    train_checkpoint_interval=10000,
    policy_checkpoint_interval=5000,
    rb_checkpoint_interval=50000,
    log_interval=1000,
    summary_interval=1000,
    summaries_flush_secs=10,
    debug_summaries=False,
    summarize_grads_and_vars=False,
    gpu_allow_growth=True,  # GPU memory growth
    gpu_memory_limit=None,  # GPU memory limit
    action_repeat=1
):  # Name of single observation channel, ['camera', 'lidar', 'birdeye']
    # Setup GPU
    gpus = tf.config.experimental.list_physical_devices('GPU')
    if gpu_allow_growth:
        for gpu in gpus:
            tf.config.experimental.set_memory_growth(gpu, True)
    if gpu_memory_limit:
        for gpu in gpus:
            tf.config.experimental.set_virtual_device_configuration(
                gpu, [
                    tf.config.experimental.VirtualDeviceConfiguration(
                        memory_limit=gpu_memory_limit)
                ])

    # Get train and eval directories
    root_dir = os.path.expanduser(root_dir)
    root_dir = os.path.join(root_dir, env_name, experiment_name)

    # Get summary writers
    summary_writer = tf.summary.create_file_writer(
        root_dir, flush_millis=summaries_flush_secs * 1000)
    summary_writer.set_as_default()

    # Eval metrics
    eval_metrics = [
        tf_metrics.AverageReturnMetric(name='AverageReturnEvalPolicy',
                                       buffer_size=num_eval_episodes),
        tf_metrics.AverageEpisodeLengthMetric(
            name='AverageEpisodeLengthEvalPolicy',
            buffer_size=num_eval_episodes),
    ]

    global_step = tf.compat.v1.train.get_or_create_global_step()

    # Whether to record for summary
    with tf.summary.record_if(
            lambda: tf.math.equal(global_step % summary_interval, 0)):
        # Create Carla environment
        if agent_name == 'latent_sac':
            py_env, eval_py_env = load_carla_env(env_name='carla-v0',
                                                 obs_channels=input_names +
                                                 mask_names,
                                                 action_repeat=action_repeat)
        elif agent_name == 'dqn':
            py_env, eval_py_env = load_carla_env(env_name='carla-v0',
                                                 discrete=True,
                                                 obs_channels=input_names,
                                                 action_repeat=action_repeat)
        else:
            py_env, eval_py_env = load_carla_env(env_name='carla-v0',
                                                 obs_channels=input_names,
                                                 action_repeat=action_repeat)

        tf_env = tf_py_environment.TFPyEnvironment(py_env)
        eval_tf_env = tf_py_environment.TFPyEnvironment(eval_py_env)
        fps = int(np.round(1.0 / (py_env.dt * action_repeat)))

        # Specs
        time_step_spec = tf_env.time_step_spec()
        observation_spec = time_step_spec.observation
        action_spec = tf_env.action_spec()

        ## Make tf agent
        if agent_name == 'latent_sac':
            # Get model network for latent sac
            if model_network_ctor_type == 'hierarchical':
                model_network_ctor = sequential_latent_network.SequentialLatentModelHierarchical
            elif model_network_ctor_type == 'non-hierarchical':
                model_network_ctor = sequential_latent_network.SequentialLatentModelNonHierarchical
            else:
                raise NotImplementedError
            model_net = model_network_ctor(input_names,
                                           input_names + mask_names)

            # Get the latent spec
            latent_size = model_net.latent_size
            latent_observation_spec = tensor_spec.TensorSpec((latent_size, ),
                                                             dtype=tf.float32)
            latent_time_step_spec = ts.time_step_spec(
                observation_spec=latent_observation_spec)

            # Get actor and critic net
            actor_net = actor_distribution_network.ActorDistributionNetwork(
                latent_observation_spec,
                action_spec,
                fc_layer_params=actor_fc_layers,
                continuous_projection_net=normal_projection_net)
            critic_net = critic_network.CriticNetwork(
                (latent_observation_spec, action_spec),
                observation_fc_layer_params=critic_obs_fc_layers,
                action_fc_layer_params=critic_action_fc_layers,
                joint_fc_layer_params=critic_joint_fc_layers)

            # Build the inner SAC agent based on latent space
            inner_agent = sac_agent.SacAgent(
                latent_time_step_spec,
                action_spec,
                actor_network=actor_net,
                critic_network=critic_net,
                actor_optimizer=tf.compat.v1.train.AdamOptimizer(
                    learning_rate=actor_learning_rate),
                critic_optimizer=tf.compat.v1.train.AdamOptimizer(
                    learning_rate=critic_learning_rate),
                alpha_optimizer=tf.compat.v1.train.AdamOptimizer(
                    learning_rate=alpha_learning_rate),
                target_update_tau=target_update_tau,
                target_update_period=target_update_period,
                td_errors_loss_fn=td_errors_loss_fn,
                gamma=gamma,
                reward_scale_factor=reward_scale_factor,
                gradient_clipping=gradient_clipping,
                debug_summaries=debug_summaries,
                summarize_grads_and_vars=summarize_grads_and_vars,
                train_step_counter=global_step)
            inner_agent.initialize()

            # Build the latent sac agent
            tf_agent = latent_sac_agent.LatentSACAgent(
                time_step_spec,
                action_spec,
                inner_agent=inner_agent,
                model_network=model_net,
                model_optimizer=tf.compat.v1.train.AdamOptimizer(
                    learning_rate=model_learning_rate),
                model_batch_size=model_batch_size,
                num_images_per_summary=num_images_per_summary,
                sequence_length=sequence_length,
                gradient_clipping=gradient_clipping,
                summarize_grads_and_vars=summarize_grads_and_vars,
                train_step_counter=global_step,
                fps=fps)

        else:
            # Set up preprosessing layers for dictionary observation inputs
            preprocessing_layers = collections.OrderedDict()
            for name in input_names:
                preprocessing_layers[name] = Preprocessing_Layer(32, 256)
            if len(input_names) < 2:
                preprocessing_combiner = None

            if agent_name == 'dqn':
                q_rnn_net = q_rnn_network.QRnnNetwork(
                    observation_spec,
                    action_spec,
                    preprocessing_layers=preprocessing_layers,
                    preprocessing_combiner=preprocessing_combiner,
                    input_fc_layer_params=critic_joint_fc_layers,
                    lstm_size=critic_lstm_size,
                    output_fc_layer_params=critic_output_fc_layers)

                tf_agent = dqn_agent.DqnAgent(
                    time_step_spec,
                    action_spec,
                    q_network=q_rnn_net,
                    epsilon_greedy=epsilon_greedy,
                    n_step_update=1,
                    target_update_tau=target_update_tau,
                    target_update_period=target_update_period,
                    optimizer=tf.compat.v1.train.AdamOptimizer(
                        learning_rate=q_learning_rate),
                    td_errors_loss_fn=common.element_wise_squared_loss,
                    gamma=gamma,
                    reward_scale_factor=reward_scale_factor,
                    gradient_clipping=gradient_clipping,
                    debug_summaries=debug_summaries,
                    summarize_grads_and_vars=summarize_grads_and_vars,
                    train_step_counter=global_step)

            elif agent_name == 'ddpg' or agent_name == 'td3':
                actor_rnn_net = multi_inputs_actor_rnn_network.MultiInputsActorRnnNetwork(
                    observation_spec,
                    action_spec,
                    preprocessing_layers=preprocessing_layers,
                    preprocessing_combiner=preprocessing_combiner,
                    input_fc_layer_params=actor_fc_layers,
                    lstm_size=actor_lstm_size,
                    output_fc_layer_params=actor_output_fc_layers)

                critic_rnn_net = multi_inputs_critic_rnn_network.MultiInputsCriticRnnNetwork(
                    (observation_spec, action_spec),
                    preprocessing_layers=preprocessing_layers,
                    preprocessing_combiner=preprocessing_combiner,
                    action_fc_layer_params=critic_action_fc_layers,
                    joint_fc_layer_params=critic_joint_fc_layers,
                    lstm_size=critic_lstm_size,
                    output_fc_layer_params=critic_output_fc_layers)

                if agent_name == 'ddpg':
                    tf_agent = ddpg_agent.DdpgAgent(
                        time_step_spec,
                        action_spec,
                        actor_network=actor_rnn_net,
                        critic_network=critic_rnn_net,
                        actor_optimizer=tf.compat.v1.train.AdamOptimizer(
                            learning_rate=actor_learning_rate),
                        critic_optimizer=tf.compat.v1.train.AdamOptimizer(
                            learning_rate=critic_learning_rate),
                        ou_stddev=ou_stddev,
                        ou_damping=ou_damping,
                        target_update_tau=target_update_tau,
                        target_update_period=target_update_period,
                        dqda_clipping=dqda_clipping,
                        td_errors_loss_fn=None,
                        gamma=gamma,
                        reward_scale_factor=reward_scale_factor,
                        gradient_clipping=gradient_clipping,
                        debug_summaries=debug_summaries,
                        summarize_grads_and_vars=summarize_grads_and_vars)
                elif agent_name == 'td3':
                    tf_agent = td3_agent.Td3Agent(
                        time_step_spec,
                        action_spec,
                        actor_network=actor_rnn_net,
                        critic_network=critic_rnn_net,
                        actor_optimizer=tf.compat.v1.train.AdamOptimizer(
                            learning_rate=actor_learning_rate),
                        critic_optimizer=tf.compat.v1.train.AdamOptimizer(
                            learning_rate=critic_learning_rate),
                        exploration_noise_std=exploration_noise_std,
                        target_update_tau=target_update_tau,
                        target_update_period=target_update_period,
                        actor_update_period=actor_update_period,
                        dqda_clipping=dqda_clipping,
                        td_errors_loss_fn=None,
                        gamma=gamma,
                        reward_scale_factor=reward_scale_factor,
                        gradient_clipping=gradient_clipping,
                        debug_summaries=debug_summaries,
                        summarize_grads_and_vars=summarize_grads_and_vars,
                        train_step_counter=global_step)

            elif agent_name == 'sac':
                actor_distribution_rnn_net = actor_distribution_rnn_network.ActorDistributionRnnNetwork(
                    observation_spec,
                    action_spec,
                    preprocessing_layers=preprocessing_layers,
                    preprocessing_combiner=preprocessing_combiner,
                    input_fc_layer_params=actor_fc_layers,
                    lstm_size=actor_lstm_size,
                    output_fc_layer_params=actor_output_fc_layers,
                    continuous_projection_net=normal_projection_net)

                critic_rnn_net = multi_inputs_critic_rnn_network.MultiInputsCriticRnnNetwork(
                    (observation_spec, action_spec),
                    preprocessing_layers=preprocessing_layers,
                    preprocessing_combiner=preprocessing_combiner,
                    action_fc_layer_params=critic_action_fc_layers,
                    joint_fc_layer_params=critic_joint_fc_layers,
                    lstm_size=critic_lstm_size,
                    output_fc_layer_params=critic_output_fc_layers)

                tf_agent = sac_agent.SacAgent(
                    time_step_spec,
                    action_spec,
                    actor_network=actor_distribution_rnn_net,
                    critic_network=critic_rnn_net,
                    actor_optimizer=tf.compat.v1.train.AdamOptimizer(
                        learning_rate=actor_learning_rate),
                    critic_optimizer=tf.compat.v1.train.AdamOptimizer(
                        learning_rate=critic_learning_rate),
                    alpha_optimizer=tf.compat.v1.train.AdamOptimizer(
                        learning_rate=alpha_learning_rate),
                    target_update_tau=target_update_tau,
                    target_update_period=target_update_period,
                    td_errors_loss_fn=tf.math.
                    squared_difference,  # make critic loss dimension compatible
                    gamma=gamma,
                    reward_scale_factor=reward_scale_factor,
                    gradient_clipping=gradient_clipping,
                    debug_summaries=debug_summaries,
                    summarize_grads_and_vars=summarize_grads_and_vars,
                    train_step_counter=global_step)

            else:
                raise NotImplementedError

        tf_agent.initialize()

        # Get replay buffer
        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            data_spec=tf_agent.collect_data_spec,
            batch_size=1,  # No parallel environments
            max_length=replay_buffer_capacity)
        replay_observer = [replay_buffer.add_batch]

        # Train metrics
        env_steps = tf_metrics.EnvironmentSteps()
        average_return = tf_metrics.AverageReturnMetric(
            buffer_size=num_eval_episodes, batch_size=tf_env.batch_size)
        train_metrics = [
            tf_metrics.NumberOfEpisodes(),
            env_steps,
            average_return,
            tf_metrics.AverageEpisodeLengthMetric(
                buffer_size=num_eval_episodes, batch_size=tf_env.batch_size),
        ]

        # Get policies
        # eval_policy = greedy_policy.GreedyPolicy(tf_agent.policy)
        eval_policy = tf_agent.policy
        initial_collect_policy = random_tf_policy.RandomTFPolicy(
            time_step_spec, action_spec)
        collect_policy = tf_agent.collect_policy

        # Checkpointers
        train_checkpointer = common.Checkpointer(
            ckpt_dir=os.path.join(root_dir, 'train'),
            agent=tf_agent,
            global_step=global_step,
            metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'),
            max_to_keep=2)
        policy_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
            root_dir, 'policy'),
                                                  policy=eval_policy,
                                                  global_step=global_step,
                                                  max_to_keep=2)
        rb_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
            root_dir, 'replay_buffer'),
                                              max_to_keep=1,
                                              replay_buffer=replay_buffer)
        train_checkpointer.initialize_or_restore()
        rb_checkpointer.initialize_or_restore()

        # Collect driver
        initial_collect_driver = dynamic_step_driver.DynamicStepDriver(
            tf_env,
            initial_collect_policy,
            observers=replay_observer + train_metrics,
            num_steps=initial_collect_steps)

        collect_driver = dynamic_step_driver.DynamicStepDriver(
            tf_env,
            collect_policy,
            observers=replay_observer + train_metrics,
            num_steps=collect_steps_per_iteration)

        # Optimize the performance by using tf functions
        initial_collect_driver.run = common.function(
            initial_collect_driver.run)
        collect_driver.run = common.function(collect_driver.run)
        tf_agent.train = common.function(tf_agent.train)

        # Collect initial replay data.
        if (env_steps.result() == 0 or replay_buffer.num_frames() == 0):
            logging.info(
                'Initializing replay buffer by collecting experience for %d steps'
                'with a random policy.', initial_collect_steps)
            initial_collect_driver.run()

        if agent_name == 'latent_sac':
            compute_summaries(eval_metrics,
                              eval_tf_env,
                              eval_policy,
                              train_step=global_step,
                              summary_writer=summary_writer,
                              num_episodes=1,
                              num_episodes_to_render=1,
                              model_net=model_net,
                              fps=10,
                              image_keys=input_names + mask_names)
        else:
            results = metric_utils.eager_compute(
                eval_metrics,
                eval_tf_env,
                eval_policy,
                num_episodes=1,
                train_step=env_steps.result(),
                summary_writer=summary_writer,
                summary_prefix='Eval',
            )
            metric_utils.log_metrics(eval_metrics)

        # Dataset generates trajectories with shape [Bxslx...]
        dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                           sample_batch_size=batch_size,
                                           num_steps=sequence_length +
                                           1).prefetch(3)
        iterator = iter(dataset)

        # Get train step
        def train_step():
            experience, _ = next(iterator)
            return tf_agent.train(experience)

        train_step = common.function(train_step)

        if agent_name == 'latent_sac':

            def train_model_step():
                experience, _ = next(iterator)
                return tf_agent.train_model(experience)

            train_model_step = common.function(train_model_step)

        # Training initializations
        time_step = None
        time_acc = 0
        env_steps_before = env_steps.result().numpy()

        # Start training
        for iteration in range(num_iterations):
            start_time = time.time()

            if agent_name == 'latent_sac' and iteration < initial_model_train_steps:
                train_model_step()
            else:
                # Run collect
                time_step, _ = collect_driver.run(time_step=time_step)

                # Train an iteration
                for _ in range(train_steps_per_iteration):
                    train_step()

            time_acc += time.time() - start_time

            # Log training information
            if global_step.numpy() % log_interval == 0:
                logging.info('env steps = %d, average return = %f',
                             env_steps.result(), average_return.result())
                env_steps_per_sec = (env_steps.result().numpy() -
                                     env_steps_before) / time_acc
                logging.info('%.3f env steps/sec', env_steps_per_sec)
                tf.summary.scalar(name='env_steps_per_sec',
                                  data=env_steps_per_sec,
                                  step=env_steps.result())
                time_acc = 0
                env_steps_before = env_steps.result().numpy()

            # Get training metrics
            for train_metric in train_metrics:
                train_metric.tf_summaries(train_step=env_steps.result())

            # Evaluation
            if global_step.numpy() % eval_interval == 0:
                # Log evaluation metrics
                if agent_name == 'latent_sac':
                    compute_summaries(
                        eval_metrics,
                        eval_tf_env,
                        eval_policy,
                        train_step=global_step,
                        summary_writer=summary_writer,
                        num_episodes=num_eval_episodes,
                        num_episodes_to_render=num_images_per_summary,
                        model_net=model_net,
                        fps=10,
                        image_keys=input_names + mask_names)
                else:
                    results = metric_utils.eager_compute(
                        eval_metrics,
                        eval_tf_env,
                        eval_policy,
                        num_episodes=num_eval_episodes,
                        train_step=env_steps.result(),
                        summary_writer=summary_writer,
                        summary_prefix='Eval',
                    )
                    metric_utils.log_metrics(eval_metrics)

            # Save checkpoints
            global_step_val = global_step.numpy()
            if global_step_val % train_checkpoint_interval == 0:
                train_checkpointer.save(global_step=global_step_val)

            if global_step_val % policy_checkpoint_interval == 0:
                policy_checkpointer.save(global_step=global_step_val)

            if global_step_val % rb_checkpoint_interval == 0:
                rb_checkpointer.save(global_step=global_step_val)
示例#20
0
def train_eval(
        root_dir,
        env_name='cartpole',
        task_name='balance',
        observations_allowlist='position',
        eval_env_name=None,
        num_iterations=1000000,
        # Params for networks.
        actor_fc_layers=(400, 300),
        actor_output_fc_layers=(100, ),
        actor_lstm_size=(40, ),
        critic_obs_fc_layers=None,
        critic_action_fc_layers=None,
        critic_joint_fc_layers=(300, ),
        critic_output_fc_layers=(100, ),
        critic_lstm_size=(40, ),
        num_parallel_environments=1,
        # Params for collect
        initial_collect_episodes=1,
        collect_episodes_per_iteration=1,
        replay_buffer_capacity=1000000,
        # Params for target update
        target_update_tau=0.05,
        target_update_period=5,
        # Params for train
        train_steps_per_iteration=1,
        batch_size=256,
        critic_learning_rate=3e-4,
        train_sequence_length=20,
        actor_learning_rate=3e-4,
        alpha_learning_rate=3e-4,
        td_errors_loss_fn=tf.math.squared_difference,
        gamma=0.99,
        reward_scale_factor=0.1,
        gradient_clipping=None,
        use_tf_functions=True,
        # Params for eval
        num_eval_episodes=30,
        eval_interval=10000,
        # Params for summaries and logging
        train_checkpoint_interval=10000,
        policy_checkpoint_interval=5000,
        rb_checkpoint_interval=50000,
        log_interval=1000,
        summary_interval=1000,
        summaries_flush_secs=10,
        debug_summaries=False,
        summarize_grads_and_vars=False,
        eval_metrics_callback=None):
    """A simple train and eval for RNN SAC on DM control."""
    root_dir = os.path.expanduser(root_dir)

    summary_writer = tf.compat.v2.summary.create_file_writer(
        root_dir, flush_millis=summaries_flush_secs * 1000)
    summary_writer.set_as_default()

    eval_metrics = [
        tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
        tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes)
    ]

    global_step = tf.compat.v1.train.get_or_create_global_step()
    with tf.compat.v2.summary.record_if(
            lambda: tf.math.equal(global_step % summary_interval, 0)):
        if observations_allowlist is not None:
            env_wrappers = [
                functools.partial(
                    wrappers.FlattenObservationsWrapper,
                    observations_allowlist=[observations_allowlist])
            ]
        else:
            env_wrappers = []

        env_load_fn = functools.partial(suite_dm_control.load,
                                        task_name=task_name,
                                        env_wrappers=env_wrappers)

        if num_parallel_environments == 1:
            py_env = env_load_fn(env_name)
        else:
            py_env = parallel_py_environment.ParallelPyEnvironment(
                [lambda: env_load_fn(env_name)] * num_parallel_environments)
        tf_env = tf_py_environment.TFPyEnvironment(py_env)
        eval_env_name = eval_env_name or env_name
        eval_tf_env = tf_py_environment.TFPyEnvironment(
            env_load_fn(eval_env_name))

        time_step_spec = tf_env.time_step_spec()
        observation_spec = time_step_spec.observation
        action_spec = tf_env.action_spec()

        actor_net = actor_distribution_rnn_network.ActorDistributionRnnNetwork(
            observation_spec,
            action_spec,
            input_fc_layer_params=actor_fc_layers,
            lstm_size=actor_lstm_size,
            output_fc_layer_params=actor_output_fc_layers,
            continuous_projection_net=tanh_normal_projection_network.
            TanhNormalProjectionNetwork)

        critic_net = critic_rnn_network.CriticRnnNetwork(
            (observation_spec, action_spec),
            observation_fc_layer_params=critic_obs_fc_layers,
            action_fc_layer_params=critic_action_fc_layers,
            joint_fc_layer_params=critic_joint_fc_layers,
            lstm_size=critic_lstm_size,
            output_fc_layer_params=critic_output_fc_layers,
            kernel_initializer='glorot_uniform',
            last_kernel_initializer='glorot_uniform')

        tf_agent = sac_agent.SacAgent(
            time_step_spec,
            action_spec,
            actor_network=actor_net,
            critic_network=critic_net,
            actor_optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=actor_learning_rate),
            critic_optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=critic_learning_rate),
            alpha_optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=alpha_learning_rate),
            target_update_tau=target_update_tau,
            target_update_period=target_update_period,
            td_errors_loss_fn=td_errors_loss_fn,
            gamma=gamma,
            reward_scale_factor=reward_scale_factor,
            gradient_clipping=gradient_clipping,
            debug_summaries=debug_summaries,
            summarize_grads_and_vars=summarize_grads_and_vars,
            train_step_counter=global_step)
        tf_agent.initialize()

        # Make the replay buffer.
        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            data_spec=tf_agent.collect_data_spec,
            batch_size=tf_env.batch_size,
            max_length=replay_buffer_capacity)
        replay_observer = [replay_buffer.add_batch]

        env_steps = tf_metrics.EnvironmentSteps(prefix='Train')
        average_return = tf_metrics.AverageReturnMetric(
            prefix='Train',
            buffer_size=num_eval_episodes,
            batch_size=tf_env.batch_size)
        train_metrics = [
            tf_metrics.NumberOfEpisodes(prefix='Train'),
            env_steps,
            average_return,
            tf_metrics.AverageEpisodeLengthMetric(
                prefix='Train',
                buffer_size=num_eval_episodes,
                batch_size=tf_env.batch_size),
        ]

        eval_policy = greedy_policy.GreedyPolicy(tf_agent.policy)
        initial_collect_policy = random_tf_policy.RandomTFPolicy(
            tf_env.time_step_spec(), tf_env.action_spec())
        collect_policy = tf_agent.collect_policy

        train_checkpointer = common.Checkpointer(
            ckpt_dir=os.path.join(root_dir, 'train'),
            agent=tf_agent,
            global_step=global_step,
            metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'))
        policy_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
            root_dir, 'policy'),
                                                  policy=eval_policy,
                                                  global_step=global_step)
        rb_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
            root_dir, 'replay_buffer'),
                                              max_to_keep=1,
                                              replay_buffer=replay_buffer)

        train_checkpointer.initialize_or_restore()
        rb_checkpointer.initialize_or_restore()

        initial_collect_driver = dynamic_episode_driver.DynamicEpisodeDriver(
            tf_env,
            initial_collect_policy,
            observers=replay_observer + train_metrics,
            num_episodes=initial_collect_episodes)

        collect_driver = dynamic_episode_driver.DynamicEpisodeDriver(
            tf_env,
            collect_policy,
            observers=replay_observer + train_metrics,
            num_episodes=collect_episodes_per_iteration)

        if use_tf_functions:
            initial_collect_driver.run = common.function(
                initial_collect_driver.run)
            collect_driver.run = common.function(collect_driver.run)
            tf_agent.train = common.function(tf_agent.train)

        # Collect initial replay data.
        if env_steps.result() == 0 or replay_buffer.num_frames() == 0:
            logging.info(
                'Initializing replay buffer by collecting experience for %d episodes '
                'with a random policy.', initial_collect_episodes)
            initial_collect_driver.run()

        results = metric_utils.eager_compute(
            eval_metrics,
            eval_tf_env,
            eval_policy,
            num_episodes=num_eval_episodes,
            train_step=env_steps.result(),
            summary_writer=summary_writer,
            summary_prefix='Eval',
        )
        if eval_metrics_callback is not None:
            eval_metrics_callback(results, env_steps.result())
        metric_utils.log_metrics(eval_metrics)

        time_step = None
        policy_state = collect_policy.get_initial_state(tf_env.batch_size)

        time_acc = 0
        env_steps_before = env_steps.result().numpy()

        # Prepare replay buffer as dataset with invalid transitions filtered.
        def _filter_invalid_transition(trajectories, unused_arg1):
            # Reduce filter_fn over full trajectory sampled. The sequence is kept only
            # if all elements except for the last one pass the filter. This is to
            # allow training on terminal steps.
            return tf.reduce_all(~trajectories.is_boundary()[:-1])

        dataset = replay_buffer.as_dataset(
            sample_batch_size=batch_size,
            num_steps=train_sequence_length + 1).unbatch().filter(
                _filter_invalid_transition).batch(batch_size).prefetch(5)
        # Dataset generates trajectories with shape [Bx2x...]
        iterator = iter(dataset)

        def train_step():
            experience, _ = next(iterator)
            return tf_agent.train(experience)

        if use_tf_functions:
            train_step = common.function(train_step)

        for _ in range(num_iterations):
            start_time = time.time()
            start_env_steps = env_steps.result()
            time_step, policy_state = collect_driver.run(
                time_step=time_step,
                policy_state=policy_state,
            )
            episode_steps = env_steps.result() - start_env_steps
            # TODO(b/152648849)
            for _ in range(episode_steps):
                for _ in range(train_steps_per_iteration):
                    train_step()
                time_acc += time.time() - start_time

                if global_step.numpy() % log_interval == 0:
                    logging.info('env steps = %d, average return = %f',
                                 env_steps.result(), average_return.result())
                    env_steps_per_sec = (env_steps.result().numpy() -
                                         env_steps_before) / time_acc
                    logging.info('%.3f env steps/sec', env_steps_per_sec)
                    tf.compat.v2.summary.scalar(name='env_steps_per_sec',
                                                data=env_steps_per_sec,
                                                step=env_steps.result())
                    time_acc = 0
                    env_steps_before = env_steps.result().numpy()

                for train_metric in train_metrics:
                    train_metric.tf_summaries(train_step=env_steps.result())

                if global_step.numpy() % eval_interval == 0:
                    results = metric_utils.eager_compute(
                        eval_metrics,
                        eval_tf_env,
                        eval_policy,
                        num_episodes=num_eval_episodes,
                        train_step=env_steps.result(),
                        summary_writer=summary_writer,
                        summary_prefix='Eval',
                    )
                    if eval_metrics_callback is not None:
                        eval_metrics_callback(results, env_steps.numpy())
                    metric_utils.log_metrics(eval_metrics)

                global_step_val = global_step.numpy()
                if global_step_val % train_checkpoint_interval == 0:
                    train_checkpointer.save(global_step=global_step_val)

                if global_step_val % policy_checkpoint_interval == 0:
                    policy_checkpointer.save(global_step=global_step_val)

                if global_step_val % rb_checkpoint_interval == 0:
                    rb_checkpointer.save(global_step=global_step_val)
示例#21
0
    def train(self,
              training_iterations=TRAINING_ITERATIONS,
              training_stock_list=None):
        self.reset(training_stock_list)

        train_dir = 'training_data_progress/train-' + self.name
        eval_dir = 'training_data_progress/eval-' + self.name

        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            data_spec=self.tf_agent.collect_data_spec,
            batch_size=self.tf_training_env.batch_size,
            max_length=MAX_BUFFER_SIZE)

        summaries_flush_secs = 10

        eval_metrics = [
            tf_metrics.AverageReturnMetric(buffer_size=NUM_EVAL_EPISODES),
            tf_metrics.AverageEpisodeLengthMetric(
                buffer_size=NUM_EVAL_EPISODES)
        ]

        global_step = self.tf_agent.train_step_counter
        with tf.compat.v2.summary.record_if(
                lambda: tf.math.equal(global_step % LOG_INTERVAL, 0)):

            replay_observer = [replay_buffer.add_batch]

            train_metrics = [
                tf_metrics.NumberOfEpisodes(),
                tf_metrics.EnvironmentSteps(),
                tf_metrics.AverageReturnMetric(
                    buffer_size=NUM_EVAL_EPISODES,
                    batch_size=self.tf_training_env.batch_size),
                tf_metrics.AverageEpisodeLengthMetric(
                    buffer_size=NUM_EVAL_EPISODES,
                    batch_size=self.tf_training_env.batch_size),
            ]

            eval_policy = greedy_policy.GreedyPolicy(self.tf_agent.policy)
            initial_collect_policy = random_tf_policy.RandomTFPolicy(
                self.tf_training_env.time_step_spec(),
                self.tf_training_env.action_spec())
            collect_policy = self.tf_agent.collect_policy

            train_checkpointer = common.Checkpointer(
                ckpt_dir=train_dir,
                agent=self.tf_agent,
                global_step=global_step,
                metrics=metric_utils.MetricsGroup(train_metrics,
                                                  'train_metrics'))
            policy_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
                train_dir, 'policy'),
                                                      policy=eval_policy,
                                                      global_step=global_step)
            rb_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
                train_dir, 'replay_buffer'),
                                                  max_to_keep=1,
                                                  replay_buffer=replay_buffer)

            train_checkpointer.initialize_or_restore()
            rb_checkpointer.initialize_or_restore()

            initial_collect_driver_random = dynamic_step_driver.DynamicStepDriver(
                self.tf_training_env,
                initial_collect_policy,
                observers=replay_observer + train_metrics,
                num_steps=INIT_COLLECT_STEPS)
            initial_collect_driver_random.run = common.function(
                initial_collect_driver_random.run)

            collect_driver = dynamic_step_driver.DynamicStepDriver(
                self.tf_training_env,
                collect_policy,
                observers=replay_observer + train_metrics,
                num_steps=STEP_ITERATIONS)

            collect_driver.run = common.function(collect_driver.run)
            self.tf_agent.train = common.function(self.tf_agent.train)

            # Collect some initial data.
            # Random
            random_policy = random_tf_policy.RandomTFPolicy(
                self.tf_training_env.time_step_spec(),
                self.tf_training_env.action_spec())
            avg_return, avg_return_per_step, avg_daily_percentage = self.compute_avg_return(
                random_policy)
            print(
                'Random:\n\tAverage Return = {0}\n\tAverage Return Per Step = {1}\n\tPercent = {2}%'
                .format(avg_return, avg_return_per_step, avg_daily_percentage))
            self.gym_training_env.save_feature_distribution(self.name)

            # Agent
            avg_return, avg_return_per_step, avg_daily_percentage = self.compute_avg_return(
                self.tf_agent.policy)
            print(
                'Agent :\n\tAverage Return = {0}\n\tAverage Return Per Step = {1}\n\tPercent = {2}%'
                .format(avg_return, avg_return_per_step, avg_daily_percentage))
            self.eval_env.reset()
            self.eval_env.run_and_save_evaluation(str(0))
            self.gym_training_env.save_feature_distribution(self.name)

            evaluations = [self.get_evaluation()]
            returns = [self.eval_env.returns]
            actions_over_time_list = [self.eval_env.action_sets_over_time]

            # Collect initial replay data.
            print(
                'Initializing replay buffer by collecting experience for {} steps with '
                'a random policy.'.format(INIT_COLLECT_STEPS))
            initial_collect_driver_random.run()

            results = metric_utils.eager_compute(
                eval_metrics,
                self.tf_training_env,
                eval_policy,
                num_episodes=NUM_EVAL_EPISODES,
                train_step=global_step,
                summary_prefix='Metrics',
            )
            metric_utils.log_metrics(eval_metrics)

            time_step = None
            policy_state = collect_policy.get_initial_state(
                self.tf_training_env.batch_size)

            timed_at_step = global_step.numpy()
            time_acc = 0

            # Prepare replay buffer as dataset with invalid transitions filtered.
            def _filter_invalid_transition(trajectories, unused_arg1):
                return ~trajectories.is_boundary()[0]

            dataset = replay_buffer.as_dataset(
                sample_batch_size=BATCH_SIZE, num_steps=2).unbatch().filter(
                    _filter_invalid_transition).batch(BATCH_SIZE).prefetch(5)
            # Dataset generates trajectories with shape [Bx2x...]
            iterator = iter(dataset)

            def _train_step():
                try:
                    experience, _ = next(iterator)
                    return self.tf_agent.train(experience)
                except Exception as e:
                    print("Caught Exception:", e)
                    return 1e-20

            train_step = common.function(_train_step)

            for _ in range(training_iterations):
                start_time = time.time()
                time_step, policy_state = collect_driver.run(
                    time_step=time_step,
                    policy_state=policy_state,
                )
                for _ in range(STEP_ITERATIONS):
                    train_loss = train_step()
                time_acc += time.time() - start_time

                self.global_step_val = global_step.numpy()

                if self.global_step_val % LOG_INTERVAL == 0:
                    steps_per_sec = (self.global_step_val -
                                     timed_at_step) / time_acc
                    print(
                        self.name,
                        '\nstep = {0:d}:\n\tloss = {1:f}\n\t{2:.3f} steps/sec'.
                        format(self.global_step_val, train_loss.loss,
                               steps_per_sec))
                    tf.compat.v2.summary.scalar(name='global_steps_per_sec',
                                                data=steps_per_sec,
                                                step=global_step)
                    timed_at_step = self.global_step_val
                    time_acc = 0

                for train_metric in train_metrics:
                    train_metric.tf_summaries(train_step=global_step,
                                              step_metrics=train_metrics[:2])

                if self.global_step_val % EVAL_INTERVAL == 0:
                    results = metric_utils.eager_compute(
                        eval_metrics,
                        self.tf_training_env,
                        eval_policy,
                        num_episodes=NUM_EVAL_EPISODES,
                        train_step=global_step,
                        summary_prefix='Metrics',
                    )
                    metric_utils.log_metrics(eval_metrics)

                    avg_return, avg_return_per_step, avg_daily_percentage = self.compute_avg_return(
                        self.tf_agent.policy)
                    print(
                        self.name,
                        '\nstep = {0}:\n\tloss = {1}\n\tAverage Return = {2}\n\tAverage Return Per Step = {3}\n\tPercent = {4}%'
                        .format(self.global_step_val, train_loss.loss,
                                avg_return, avg_return_per_step,
                                avg_daily_percentage))
                    self.eval_env.reset()
                    self.eval_env.run_and_save_evaluation(
                        str(self.global_step_val // EVAL_INTERVAL))
                    self.gym_training_env.save_feature_distribution(self.name)

                    if avg_daily_percentage == returns[-1]:
                        "---- Average return did not change since last time. Breaking loop."
                        break

                    evaluations.append(self.get_evaluation())
                    returns.append(self.eval_env.returns)
                    actions_over_time_list.append(
                        self.eval_env.action_sets_over_time)

                    train_checkpointer.save(global_step=self.global_step_val)
                    policy_checkpointer.save(global_step=self.global_step_val)
                    rb_checkpointer.save(global_step=self.global_step_val)

        training_report = util.load_training_report()
        agent_report = training_report.get(self.name, dict())
        agent_report["Training Results"] = returns
        agent_report["Evaluations"] = [max(e, 0.0) for e in evaluations]
        bins = [0.1 * i - 0.0000001 for i in range(11)]
        agent_report["Histograms"] = [
            str(list(map(int,
                         np.histogram(actions, bins, density=True)[0])))
            for actions in actions_over_time_list
        ]
        training_report[self.name] = agent_report
        util.save_training_report(training_report)

        print("---- Average-daily-percentage over training period for",
              self.name)
        print("\t\t", avg_daily_percentage)
        self.save()
        self.reset()
示例#22
0
def train(root_dir,
          agent,
          environment,
          training_loops,
          steps_per_loop,
          additional_metrics=(),
          training_data_spec_transformation_fn=None):
    """Perform `training_loops` iterations of training.

  Checkpoint results.

  If one or more baseline_reward_fns are provided, the regret is computed
  against each one of them. Here is example baseline_reward_fn:

  def baseline_reward_fn(observation, per_action_reward_fns):
   rewards = ... # compute reward for each arm
   optimal_action_reward = ... # take the maximum reward
   return optimal_action_reward

  Args:
    root_dir: path to the directory where checkpoints and metrics will be
      written.
    agent: an instance of `TFAgent`.
    environment: an instance of `TFEnvironment`.
    training_loops: an integer indicating how many training loops should be run.
    steps_per_loop: an integer indicating how many driver steps should be
      executed and presented to the trainer during each training loop.
    additional_metrics: Tuple of metric objects to log, in addition to default
      metrics `NumberOfEpisodes`, `AverageReturnMetric`, and
      `AverageEpisodeLengthMetric`.
    training_data_spec_transformation_fn: Optional function that transforms the
    data items before they get to the replay buffer.
  """

    # TODO(b/127641485): create evaluation loop with configurable metrics.
    if training_data_spec_transformation_fn is None:
        data_spec = agent.policy.trajectory_spec
    else:
        data_spec = training_data_spec_transformation_fn(
            agent.policy.trajectory_spec)
    replay_buffer = get_replay_buffer(data_spec, environment.batch_size,
                                      steps_per_loop)

    # `step_metric` records the number of individual rounds of bandit interaction;
    # that is, (number of trajectories) * batch_size.
    step_metric = tf_metrics.EnvironmentSteps()
    metrics = [
        tf_metrics.NumberOfEpisodes(),
        tf_metrics.AverageEpisodeLengthMetric(
            batch_size=environment.batch_size)
    ] + list(additional_metrics)

    if isinstance(environment.reward_spec(), dict):
        metrics += [
            tf_metrics.AverageReturnMultiMetric(
                reward_spec=environment.reward_spec(),
                batch_size=environment.batch_size)
        ]
    else:
        metrics += [
            tf_metrics.AverageReturnMetric(batch_size=environment.batch_size)
        ]

    if training_data_spec_transformation_fn is not None:
        add_batch_fn = lambda data: replay_buffer.add_batch(  # pylint: disable=g-long-lambda
            training_data_spec_transformation_fn(data))
    else:
        add_batch_fn = replay_buffer.add_batch

    observers = [add_batch_fn, step_metric] + metrics

    driver = dynamic_step_driver.DynamicStepDriver(env=environment,
                                                   policy=agent.collect_policy,
                                                   num_steps=steps_per_loop *
                                                   environment.batch_size,
                                                   observers=observers)

    training_loop = get_training_loop_fn(driver, replay_buffer, agent,
                                         steps_per_loop)
    checkpoint_manager = restore_and_get_checkpoint_manager(
        root_dir, agent, metrics, step_metric)
    saver = policy_saver.PolicySaver(agent.policy)

    summary_writer = tf.summary.create_file_writer(root_dir)
    summary_writer.set_as_default()
    for _ in range(training_loops):
        training_loop()
        metric_utils.log_metrics(metrics)
        for metric in metrics:
            metric.tf_summaries(train_step=step_metric.result())
        checkpoint_manager.save()
        saver.save(os.path.join(root_dir, 'policy_%d' % step_metric.result()))
示例#23
0
def train_eval(
        load_root_dir,
        env_load_fn=None,
        gym_env_wrappers=[],
        monitor=False,
        env_name=None,
        agent_class=None,
        train_metrics_callback=None,
        # SacAgent args
        actor_fc_layers=(256, 256),
        critic_joint_fc_layers=(256, 256),
        # Safety Critic training args
        safety_critic_joint_fc_layers=None,
        safety_critic_lr=3e-4,
        safety_critic_bias_init_val=None,
        safety_critic_kernel_scale=None,
        n_envs=None,
        target_safety=0.2,
        fail_weight=None,
        # Params for train
        num_global_steps=10000,
        batch_size=256,
        # Params for eval
        run_eval=False,
        eval_metrics=[],
        num_eval_episodes=10,
        eval_interval=1000,
        # Params for summaries and logging
        train_checkpoint_interval=10000,
        summary_interval=1000,
        monitor_interval=5000,
        summaries_flush_secs=10,
        debug_summaries=False,
        seed=None):

    if isinstance(agent_class, str):
        assert agent_class in ALGOS, 'trainer.train_eval: agent_class {} invalid'.format(
            agent_class)
        agent_class = ALGOS.get(agent_class)

    train_ckpt_dir = osp.join(load_root_dir, 'train')
    rb_ckpt_dir = osp.join(load_root_dir, 'train', 'replay_buffer')

    py_env = env_load_fn(env_name, gym_env_wrappers=gym_env_wrappers)
    tf_env = tf_py_environment.TFPyEnvironment(py_env)

    if monitor:
        vid_path = os.path.join(load_root_dir, 'rollouts')
        monitor_env_wrapper = misc.monitor_freq(1, vid_path)
        monitor_env = gym.make(env_name)
        for wrapper in gym_env_wrappers:
            monitor_env = wrapper(monitor_env)
        monitor_env = monitor_env_wrapper(monitor_env)
        # auto_reset must be False to ensure Monitor works correctly
        monitor_py_env = gym_wrapper.GymWrapper(monitor_env, auto_reset=False)

    if run_eval:
        eval_dir = os.path.join(load_root_dir, 'eval')
        n_envs = n_envs or num_eval_episodes
        eval_summary_writer = tf.compat.v2.summary.create_file_writer(
            eval_dir, flush_millis=summaries_flush_secs * 1000)
        eval_metrics = [
            tf_metrics.AverageReturnMetric(prefix='EvalMetrics',
                                           buffer_size=num_eval_episodes,
                                           batch_size=n_envs),
            tf_metrics.AverageEpisodeLengthMetric(
                prefix='EvalMetrics',
                buffer_size=num_eval_episodes,
                batch_size=n_envs)
        ] + [
            tf_py_metric.TFPyMetric(m, name='EvalMetrics/{}'.format(m.name))
            for m in eval_metrics
        ]
        eval_tf_env = tf_py_environment.TFPyEnvironment(
            parallel_py_environment.ParallelPyEnvironment([
                lambda: env_load_fn(env_name,
                                    gym_env_wrappers=gym_env_wrappers)
            ] * n_envs))
        if seed:
            seeds = [seed * n_envs + i for i in range(n_envs)]
            try:
                eval_tf_env.pyenv.seed(seeds)
            except:
                pass

    global_step = tf.compat.v1.train.get_or_create_global_step()

    time_step_spec = tf_env.time_step_spec()
    observation_spec = time_step_spec.observation
    action_spec = tf_env.action_spec()

    actor_net = actor_distribution_network.ActorDistributionNetwork(
        observation_spec,
        action_spec,
        fc_layer_params=actor_fc_layers,
        continuous_projection_net=agents.normal_projection_net)

    critic_net = agents.CriticNetwork(
        (observation_spec, action_spec),
        joint_fc_layer_params=critic_joint_fc_layers)

    if agent_class in SAFETY_AGENTS:
        safety_critic_net = agents.CriticNetwork(
            (observation_spec, action_spec),
            joint_fc_layer_params=critic_joint_fc_layers)
        tf_agent = agent_class(time_step_spec,
                               action_spec,
                               actor_network=actor_net,
                               critic_network=critic_net,
                               safety_critic_network=safety_critic_net,
                               train_step_counter=global_step,
                               debug_summaries=False)
    else:
        tf_agent = agent_class(time_step_spec,
                               action_spec,
                               actor_network=actor_net,
                               critic_network=critic_net,
                               train_step_counter=global_step,
                               debug_summaries=False)

    collect_data_spec = tf_agent.collect_data_spec
    replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
        collect_data_spec, batch_size=1, max_length=1000000)
    replay_buffer = misc.load_rb_ckpt(rb_ckpt_dir, replay_buffer)

    tf_agent, _ = misc.load_agent_ckpt(train_ckpt_dir, tf_agent)
    if agent_class in SAFETY_AGENTS:
        target_safety = target_safety or tf_agent._target_safety
    loaded_train_steps = global_step.numpy()
    logging.info("Loaded agent from %s trained for %d steps", train_ckpt_dir,
                 loaded_train_steps)
    global_step.assign(0)
    tf.summary.experimental.set_step(global_step)

    thresholds = [target_safety, 0.5]
    sc_metrics = [
        tf.keras.metrics.AUC(name='safety_critic_auc'),
        tf.keras.metrics.BinaryAccuracy(name='safety_critic_acc',
                                        threshold=0.5),
        tf.keras.metrics.TruePositives(name='safety_critic_tp',
                                       thresholds=thresholds),
        tf.keras.metrics.FalsePositives(name='safety_critic_fp',
                                        thresholds=thresholds),
        tf.keras.metrics.TrueNegatives(name='safety_critic_tn',
                                       thresholds=thresholds),
        tf.keras.metrics.FalseNegatives(name='safety_critic_fn',
                                        thresholds=thresholds)
    ]

    if seed:
        tf.compat.v1.set_random_seed(seed)

    summaries_flush_secs = 10
    timestamp = datetime.utcnow().strftime('%Y-%m-%d-%H-%M-%S')
    offline_train_dir = osp.join(train_ckpt_dir, 'offline', timestamp)
    config_saver = gin.tf.GinConfigSaverHook(offline_train_dir,
                                             summarize_config=True)
    tf.function(config_saver.after_create_session)()

    sc_summary_writer = tf.compat.v2.summary.create_file_writer(
        offline_train_dir, flush_millis=summaries_flush_secs * 1000)
    sc_summary_writer.set_as_default()

    if safety_critic_kernel_scale is not None:
        ki = tf.compat.v1.variance_scaling_initializer(
            scale=safety_critic_kernel_scale,
            mode='fan_in',
            distribution='truncated_normal')
    else:
        ki = tf.compat.v1.keras.initializers.VarianceScaling(
            scale=1. / 3., mode='fan_in', distribution='uniform')

    if safety_critic_bias_init_val is not None:
        bi = tf.constant_initializer(safety_critic_bias_init_val)
    else:
        bi = None
    sc_net_off = agents.CriticNetwork(
        (observation_spec, action_spec),
        joint_fc_layer_params=safety_critic_joint_fc_layers,
        kernel_initializer=ki,
        value_bias_initializer=bi,
        name='SafetyCriticOffline')
    sc_net_off.create_variables()
    target_sc_net_off = common.maybe_copy_target_network_with_checks(
        sc_net_off, None, 'TargetSafetyCriticNetwork')
    optimizer = tf.keras.optimizers.Adam(safety_critic_lr)
    sc_net_off_ckpt_dir = os.path.join(offline_train_dir, 'safety_critic')
    sc_checkpointer = common.Checkpointer(
        ckpt_dir=sc_net_off_ckpt_dir,
        safety_critic=sc_net_off,
        target_safety_critic=target_sc_net_off,
        optimizer=optimizer,
        global_step=global_step,
        max_to_keep=5)
    sc_checkpointer.initialize_or_restore()

    resample_counter = py_metrics.CounterMetric('ActionResampleCounter')
    eval_policy = agents.SafeActorPolicyRSVar(
        time_step_spec=time_step_spec,
        action_spec=action_spec,
        actor_network=actor_net,
        safety_critic_network=sc_net_off,
        safety_threshold=target_safety,
        resample_counter=resample_counter,
        training=True)

    dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                       num_steps=2,
                                       sample_batch_size=batch_size //
                                       2).prefetch(3)
    data = iter(dataset)
    full_data = replay_buffer.gather_all()

    fail_mask = tf.cast(full_data.observation['task_agn_rew'], tf.bool)
    fail_step = nest_utils.fast_map_structure(
        lambda *x: tf.boolean_mask(*x, fail_mask), full_data)
    init_step = nest_utils.fast_map_structure(
        lambda *x: tf.boolean_mask(*x, full_data.is_first()), full_data)
    before_fail_mask = tf.roll(fail_mask, [-1], axis=[1])
    after_init_mask = tf.roll(full_data.is_first(), [1], axis=[1])
    before_fail_step = nest_utils.fast_map_structure(
        lambda *x: tf.boolean_mask(*x, before_fail_mask), full_data)
    after_init_step = nest_utils.fast_map_structure(
        lambda *x: tf.boolean_mask(*x, after_init_mask), full_data)

    filter_mask = tf.squeeze(tf.logical_or(before_fail_mask, fail_mask))
    filter_mask = tf.pad(
        filter_mask, [[0, replay_buffer._max_length - filter_mask.shape[0]]])
    n_failures = tf.reduce_sum(tf.cast(filter_mask, tf.int32)).numpy()

    failure_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
        collect_data_spec,
        batch_size=1,
        max_length=n_failures,
        dataset_window_shift=1)
    data_utils.copy_rb(replay_buffer, failure_buffer, filter_mask)

    sc_dataset_neg = failure_buffer.as_dataset(num_parallel_calls=3,
                                               sample_batch_size=batch_size //
                                               2,
                                               num_steps=2).prefetch(3)
    neg_data = iter(sc_dataset_neg)

    get_action = lambda ts: tf_agent._actions_and_log_probs(ts)[0]
    eval_sc = log_utils.eval_fn(before_fail_step, fail_step, init_step,
                                after_init_step, get_action)

    losses = []
    mean_loss = tf.keras.metrics.Mean(name='mean_ep_loss')
    target_update = train_utils.get_target_updater(sc_net_off,
                                                   target_sc_net_off)

    with tf.summary.record_if(
            lambda: tf.math.equal(global_step % summary_interval, 0)):
        while global_step.numpy() < num_global_steps:
            pos_experience, _ = next(data)
            neg_experience, _ = next(neg_data)
            exp = data_utils.concat_batches(pos_experience, neg_experience,
                                            collect_data_spec)
            boundary_mask = tf.logical_not(exp.is_boundary()[:, 0])
            exp = nest_utils.fast_map_structure(
                lambda *x: tf.boolean_mask(*x, boundary_mask), exp)
            safe_rew = exp.observation['task_agn_rew'][:, 1]
            if fail_weight:
                weights = tf.where(tf.cast(safe_rew, tf.bool),
                                   fail_weight / 0.5, (1 - fail_weight) / 0.5)
            else:
                weights = None
            train_loss, sc_loss, lam_loss = train_step(
                exp,
                safe_rew,
                tf_agent,
                sc_net=sc_net_off,
                target_sc_net=target_sc_net_off,
                metrics=sc_metrics,
                weights=weights,
                target_safety=target_safety,
                optimizer=optimizer,
                target_update=target_update,
                debug_summaries=debug_summaries)
            global_step.assign_add(1)
            global_step_val = global_step.numpy()
            losses.append(
                (train_loss.numpy(), sc_loss.numpy(), lam_loss.numpy()))
            mean_loss(train_loss)
            with tf.name_scope('Losses'):
                tf.compat.v2.summary.scalar(name='sc_loss',
                                            data=sc_loss,
                                            step=global_step_val)
                tf.compat.v2.summary.scalar(name='lam_loss',
                                            data=lam_loss,
                                            step=global_step_val)
                if global_step_val % summary_interval == 0:
                    tf.compat.v2.summary.scalar(name=mean_loss.name,
                                                data=mean_loss.result(),
                                                step=global_step_val)
            if global_step_val % summary_interval == 0:
                with tf.name_scope('Metrics'):
                    for metric in sc_metrics:
                        if len(tf.squeeze(metric.result()).shape) == 0:
                            tf.compat.v2.summary.scalar(name=metric.name,
                                                        data=metric.result(),
                                                        step=global_step_val)
                        else:
                            fmt_str = '_{}'.format(thresholds[0])
                            tf.compat.v2.summary.scalar(
                                name=metric.name + fmt_str,
                                data=metric.result()[0],
                                step=global_step_val)
                            fmt_str = '_{}'.format(thresholds[1])
                            tf.compat.v2.summary.scalar(
                                name=metric.name + fmt_str,
                                data=metric.result()[1],
                                step=global_step_val)
                        metric.reset_states()
            if global_step_val % eval_interval == 0:
                eval_sc(sc_net_off, step=global_step_val)
                if run_eval:
                    results = metric_utils.eager_compute(
                        eval_metrics,
                        eval_tf_env,
                        eval_policy,
                        num_episodes=num_eval_episodes,
                        train_step=global_step,
                        summary_writer=eval_summary_writer,
                        summary_prefix='EvalMetrics',
                    )
                    if train_metrics_callback is not None:
                        train_metrics_callback(results, global_step_val)
                    metric_utils.log_metrics(eval_metrics)
                    with eval_summary_writer.as_default():
                        for eval_metric in eval_metrics[2:]:
                            eval_metric.tf_summaries(
                                train_step=global_step,
                                step_metrics=eval_metrics[:2])
            if monitor and global_step_val % monitor_interval == 0:
                monitor_time_step = monitor_py_env.reset()
                monitor_policy_state = eval_policy.get_initial_state(1)
                ep_len = 0
                monitor_start = time.time()
                while not monitor_time_step.is_last():
                    monitor_action = eval_policy.action(
                        monitor_time_step, monitor_policy_state)
                    action, monitor_policy_state = monitor_action.action, monitor_action.state
                    monitor_time_step = monitor_py_env.step(action)
                    ep_len += 1
                logging.debug(
                    'saved rollout at timestep %d, rollout length: %d, %4.2f sec',
                    global_step_val, ep_len,
                    time.time() - monitor_start)

            if global_step_val % train_checkpoint_interval == 0:
                sc_checkpointer.save(global_step=global_step_val)
示例#24
0
def train_eval(
    root_dir,
    env_name='HalfCheetah-v2',
    num_iterations=1000000,
    actor_fc_layers=(256, 256),
    critic_obs_fc_layers=None,
    critic_action_fc_layers=None,
    critic_joint_fc_layers=(256, 256),
    # Params for collect
    initial_collect_steps=10000,
    collect_steps_per_iteration=1,
    replay_buffer_capacity=1000000,
    # Params for target update
    target_update_tau=0.005,
    target_update_period=1,
    # Params for train
    train_steps_per_iteration=1,
    batch_size=256,
    actor_learning_rate=3e-4,
    critic_learning_rate=3e-4,
    alpha_learning_rate=3e-4,
    td_errors_loss_fn=tf.compat.v1.losses.mean_squared_error,
    gamma=0.99,
    reward_scale_factor=1.0,
    gradient_clipping=None,
    use_tf_functions=True,
    # Params for eval
    num_eval_episodes=30,
    eval_interval=10000,
    # Params for summaries and logging
    train_checkpoint_interval=10000,
    policy_checkpoint_interval=5000,
    rb_checkpoint_interval=50000,
    log_interval=1000,
    summary_interval=1000,
    summaries_flush_secs=10,
    debug_summaries=False,
    summarize_grads_and_vars=False,
    eval_metrics_callback=None):
  """A simple train and eval for SAC."""
  root_dir = os.path.expanduser(root_dir)
  train_dir = os.path.join(root_dir, 'train')
  eval_dir = os.path.join(root_dir, 'eval')

  train_summary_writer = tf.compat.v2.summary.create_file_writer(
      train_dir, flush_millis=summaries_flush_secs * 1000)
  train_summary_writer.set_as_default()

  eval_summary_writer = tf.compat.v2.summary.create_file_writer(
      eval_dir, flush_millis=summaries_flush_secs * 1000)
  eval_metrics = [
      tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
      tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes)
  ]

  global_step = tf.compat.v1.train.get_or_create_global_step()
  with tf.compat.v2.summary.record_if(
      lambda: tf.math.equal(global_step % summary_interval, 0)):
    tf_env = tf_py_environment.TFPyEnvironment(suite_mujoco.load(env_name))
    eval_tf_env = tf_py_environment.TFPyEnvironment(suite_mujoco.load(env_name))

    time_step_spec = tf_env.time_step_spec()
    observation_spec = time_step_spec.observation
    action_spec = tf_env.action_spec()

    actor_net = actor_distribution_network.ActorDistributionNetwork(
        observation_spec,
        action_spec,
        fc_layer_params=actor_fc_layers,
        continuous_projection_net=normal_projection_net)
    critic_net = critic_network.CriticNetwork(
        (observation_spec, action_spec),
        observation_fc_layer_params=critic_obs_fc_layers,
        action_fc_layer_params=critic_action_fc_layers,
        joint_fc_layer_params=critic_joint_fc_layers)

    tf_agent = sac_agent.SacAgent(
        time_step_spec,
        action_spec,
        actor_network=actor_net,
        critic_network=critic_net,
        actor_optimizer=tf.compat.v1.train.AdamOptimizer(
            learning_rate=actor_learning_rate),
        critic_optimizer=tf.compat.v1.train.AdamOptimizer(
            learning_rate=critic_learning_rate),
        alpha_optimizer=tf.compat.v1.train.AdamOptimizer(
            learning_rate=alpha_learning_rate),
        target_update_tau=target_update_tau,
        target_update_period=target_update_period,
        td_errors_loss_fn=td_errors_loss_fn,
        gamma=gamma,
        reward_scale_factor=reward_scale_factor,
        gradient_clipping=gradient_clipping,
        debug_summaries=debug_summaries,
        summarize_grads_and_vars=summarize_grads_and_vars,
        train_step_counter=global_step)
    tf_agent.initialize()

    # Make the replay buffer.
    replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
        data_spec=tf_agent.collect_data_spec,
        batch_size=1,
        max_length=replay_buffer_capacity)
    replay_observer = [replay_buffer.add_batch]

    train_metrics = [
        tf_metrics.NumberOfEpisodes(),
        tf_metrics.EnvironmentSteps(),
        tf_py_metric.TFPyMetric(py_metrics.AverageReturnMetric()),
        tf_py_metric.TFPyMetric(py_metrics.AverageEpisodeLengthMetric()),
    ]

    eval_policy = greedy_policy.GreedyPolicy(tf_agent.policy)
    initial_collect_policy = random_tf_policy.RandomTFPolicy(
        tf_env.time_step_spec(), tf_env.action_spec())
    collect_policy = tf_agent.collect_policy

    train_checkpointer = common.Checkpointer(
        ckpt_dir=train_dir,
        agent=tf_agent,
        global_step=global_step,
        metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'))
    policy_checkpointer = common.Checkpointer(
        ckpt_dir=os.path.join(train_dir, 'policy'),
        policy=eval_policy,
        global_step=global_step)
    rb_checkpointer = common.Checkpointer(
        ckpt_dir=os.path.join(train_dir, 'replay_buffer'),
        max_to_keep=1,
        replay_buffer=replay_buffer)

    train_checkpointer.initialize_or_restore()
    rb_checkpointer.initialize_or_restore()

    initial_collect_driver = dynamic_step_driver.DynamicStepDriver(
        tf_env,
        initial_collect_policy,
        observers=replay_observer,
        num_steps=initial_collect_steps)

    collect_driver = dynamic_step_driver.DynamicStepDriver(
        tf_env,
        collect_policy,
        observers=replay_observer + train_metrics,
        num_steps=collect_steps_per_iteration)

    if use_tf_functions:
      initial_collect_driver.run = common.function(initial_collect_driver.run)
      collect_driver.run = common.function(collect_driver.run)
      tf_agent.train = common.function(tf_agent.train)

    # Collect initial replay data.
    logging.info(
        'Initializing replay buffer by collecting experience for %d steps with '
        'a random policy.', initial_collect_steps)
    initial_collect_driver.run()

    results = metric_utils.eager_compute(
        eval_metrics,
        eval_tf_env,
        eval_policy,
        num_episodes=num_eval_episodes,
        train_step=global_step,
        summary_writer=eval_summary_writer,
        summary_prefix='Metrics',
    )
    if eval_metrics_callback is not None:
      eval_metrics_callback(results, global_step.numpy())
    metric_utils.log_metrics(eval_metrics)

    time_step = None
    policy_state = collect_policy.get_initial_state(tf_env.batch_size)

    timed_at_step = global_step.numpy()
    time_acc = 0

    # Dataset generates trajectories with shape [Bx2x...]
    dataset = replay_buffer.as_dataset(
        num_parallel_calls=3,
        sample_batch_size=batch_size,
        num_steps=2).prefetch(3)
    iterator = iter(dataset)

    for _ in range(num_iterations):
      start_time = time.time()
      time_step, policy_state = collect_driver.run(
          time_step=time_step,
          policy_state=policy_state,
      )
      for _ in range(train_steps_per_iteration):
        experience, _ = next(iterator)
        train_loss = tf_agent.train(experience)
      time_acc += time.time() - start_time

      if global_step.numpy() % log_interval == 0:
        logging.info('step = %d, loss = %f', global_step.numpy(),
                     train_loss.loss)
        steps_per_sec = (global_step.numpy() - timed_at_step) / time_acc
        logging.info('%.3f steps/sec', steps_per_sec)
        tf.compat.v2.summary.scalar(
            name='global_steps_per_sec', data=steps_per_sec, step=global_step)
        timed_at_step = global_step.numpy()
        time_acc = 0

      for train_metric in train_metrics:
        train_metric.tf_summaries(
            train_step=global_step, step_metrics=train_metrics[:2])

      if global_step.numpy() % eval_interval == 0:
        results = metric_utils.eager_compute(
            eval_metrics,
            eval_tf_env,
            eval_policy,
            num_episodes=num_eval_episodes,
            train_step=global_step,
            summary_writer=eval_summary_writer,
            summary_prefix='Metrics',
        )
        if eval_metrics_callback is not None:
          eval_metrics_callback(results, global_step.numpy())
        metric_utils.log_metrics(eval_metrics)

      global_step_val = global_step.numpy()
      if global_step_val % train_checkpoint_interval == 0:
        train_checkpointer.save(global_step=global_step_val)

      if global_step_val % policy_checkpoint_interval == 0:
        policy_checkpointer.save(global_step=global_step_val)

      if global_step_val % rb_checkpoint_interval == 0:
        rb_checkpointer.save(global_step=global_step_val)
    return train_loss
示例#25
0
def train_eval(root_dir, tf_env, eval_tf_env, agent, num_iterations,
               initial_collect_steps, collect_steps_per_iteration,
               replay_buffer_capacity, train_steps_per_iteration, batch_size,
               use_tf_functions, num_eval_episodes, eval_interval,
               train_checkpoint_interval, policy_checkpoint_interval,
               rb_checkpoint_interval, log_interval, summary_interval,
               summaries_flush_secs):
    """A simple train and eval for DQN."""
    root_dir = os.path.expanduser(root_dir)
    train_dir = os.path.join(root_dir, 'train')
    eval_dir = os.path.join(root_dir, 'eval')

    train_summary_writer = tf.compat.v2.summary.create_file_writer(
        train_dir, flush_millis=summaries_flush_secs * 1000)
    train_summary_writer.set_as_default()

    eval_summary_writer = tf.compat.v2.summary.create_file_writer(
        eval_dir, flush_millis=summaries_flush_secs * 1000)
    eval_metrics = [
        #tf_metrics.ChosenActionHistogram(buffer_size=num_eval_episodes),
        tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
        #tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes)
    ]

    global_step = tf.compat.v1.train.get_or_create_global_step()

    with tf.compat.v2.summary.record_if(
            lambda: tf.math.equal(global_step % summary_interval, 0)):

        tf_env = tf_env
        eval_tf_env = eval_tf_env

        tf_agent = agent

        train_metrics = [
            #tf_metrics.ChosenActionHistogram(),
            tf_metrics.NumberOfEpisodes(),
            tf_metrics.EnvironmentSteps(),
            tf_metrics.AverageReturnMetric(buffer_size=1),
            #tf_metrics.AverageEpisodeLengthMetric(),
        ]

        diverged = False

        eval_policy = tf_agent.policy
        collect_policy = tf_agent.collect_policy

        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            data_spec=tf_agent.collect_data_spec,
            batch_size=tf_env.batch_size,
            max_length=replay_buffer_capacity)

        collect_driver = dynamic_step_driver.DynamicStepDriver(
            tf_env,
            collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_steps=collect_steps_per_iteration)

        train_checkpointer = common.Checkpointer(
            ckpt_dir=train_dir,
            agent=tf_agent,
            global_step=global_step,
            max_to_keep=1,
            metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'))

        policy_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
            train_dir, 'policy'),
                                                  policy=eval_policy,
                                                  max_to_keep=1,
                                                  global_step=global_step)

        rb_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
            train_dir, 'replay_buffer'),
                                              max_to_keep=1,
                                              replay_buffer=replay_buffer)

        train_checkpointer.initialize_or_restore()
        rb_checkpointer.initialize_or_restore()
        best_policy = -1000
        if use_tf_functions:
            # To speed up collect use common.function.
            collect_driver.run = common.function(collect_driver.run)
            tf_agent.train = common.function(tf_agent.train)

        initial_collect_policy = random_tf_policy.RandomTFPolicy(
            tf_env.time_step_spec(), tf_env.action_spec())

        #Collect initial replay data.
        dynamic_step_driver.DynamicStepDriver(
            tf_env,
            initial_collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_steps=initial_collect_steps).run()

        results = metric_utils.eager_compute(
            eval_metrics,
            eval_tf_env,
            eval_policy,
            num_episodes=num_eval_episodes,
            train_step=global_step,
            summary_writer=eval_summary_writer,
            summary_prefix='Metrics',
        )
        metric_utils.log_metrics(eval_metrics)

        time_step = None
        policy_state = collect_policy.get_initial_state(tf_env.batch_size)
        timed_at_step = global_step.numpy()
        time_acc = 0

        # Dataset generates trajectories with shape [Bx2x...]
        dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                           sample_batch_size=batch_size,
                                           num_steps=2).prefetch(3)
        iterator = iter(dataset)

        def train_step():
            experience, _ = next(iterator)
            return tf_agent.train(experience)

        if use_tf_functions:
            train_step = common.function(train_step)

        for _ in range(num_iterations):
            start_time = time.time()
            time_step, policy_state = collect_driver.run(
                time_step=time_step,
                policy_state=policy_state,
            )
            for _ in range(train_steps_per_iteration):
                train_loss = train_step()
            time_acc += time.time() - start_time

            if np.isnan(train_loss.loss).any():
                diverged = True
                break
            elif np.isinf(train_loss.loss).any():
                diverged = True
                break

            if global_step.numpy() % log_interval == 0:
                print('step = {0}, loss = {1}'.format(global_step.numpy(),
                                                      train_loss.loss))

                steps_per_sec = (global_step.numpy() -
                                 timed_at_step) / time_acc
                print('{0} steps/sec'.format(steps_per_sec))
                tf.compat.v2.summary.scalar(name='global_steps_per_sec',
                                            data=steps_per_sec,
                                            step=global_step)
                timed_at_step = global_step.numpy()
                time_acc = 0

            for train_metric in train_metrics:
                train_metric.tf_summaries(train_step=global_step,
                                          step_metrics=train_metrics[:2])

            if global_step.numpy() % train_checkpoint_interval == 0:
                train_checkpointer.save(global_step=global_step.numpy())

            if global_step.numpy() % rb_checkpoint_interval == 0:
                rb_checkpointer.save(global_step=global_step.numpy())

            if global_step.numpy() % eval_interval == 0:
                results = metric_utils.eager_compute(
                    eval_metrics,
                    eval_tf_env,
                    eval_policy,
                    num_episodes=num_eval_episodes,
                    train_step=global_step,
                    summary_writer=eval_summary_writer,
                    summary_prefix='Metrics',
                )

                if results["AverageReturn"].numpy() > best_policy:
                    print("New best policy found")
                    print(results["AverageReturn"].numpy())
                    best_policy = results["AverageReturn"].numpy()
                    policy_checkpointer.save(global_step=global_step.numpy())

                metric_utils.log_metrics(eval_metrics)
        return train_loss
示例#26
0
def train_eval(
    root_dir,
    env_name='sawyer_reach',
    num_iterations=3000000,
    actor_fc_layers=(256, 256),
    critic_obs_fc_layers=None,
    critic_action_fc_layers=None,
    critic_joint_fc_layers=(256, 256),
    # Params for collect
    initial_collect_steps=10000,
    collect_steps_per_iteration=1,
    replay_buffer_capacity=1000000,
    # Params for target update
    target_update_tau=0.005,
    target_update_period=1,
    # Params for train
    train_steps_per_iteration=1,
    batch_size=256,
    actor_learning_rate=3e-4,
    critic_learning_rate=3e-4,
    gamma=0.99,
    gradient_clipping=None,
    use_tf_functions=True,
    # Params for eval
    num_eval_episodes=30,
    eval_interval=10000,
    # Params for summaries and logging
    train_checkpoint_interval=200000,
    log_interval=1000,
    summary_interval=1000,
    summaries_flush_secs=10,
    debug_summaries=False,
    summarize_grads_and_vars=False,
    random_seed=0,
    max_future_steps=50,
    actor_std=None,
    log_subset=None,
    ):
  """A simple train and eval for SAC."""
  np.random.seed(random_seed)
  tf.random.set_seed(random_seed)

  root_dir = os.path.expanduser(root_dir)
  train_dir = os.path.join(root_dir, 'train')
  eval_dir = os.path.join(root_dir, 'eval')

  train_summary_writer = tf.compat.v2.summary.create_file_writer(
      train_dir, flush_millis=summaries_flush_secs * 1000)
  train_summary_writer.set_as_default()

  global_step = tf.compat.v1.train.get_or_create_global_step()
  with tf.compat.v2.summary.record_if(
      lambda: tf.math.equal(global_step % summary_interval, 0)):
    tf_env, eval_tf_env, obs_dim = c_learning_envs.load(env_name)

    time_step_spec = tf_env.time_step_spec()
    observation_spec = time_step_spec.observation
    action_spec = tf_env.action_spec()

    if actor_std is None:
      proj_net = tanh_normal_projection_network.TanhNormalProjectionNetwork
    else:
      proj_net = functools.partial(
          tanh_normal_projection_network.TanhNormalProjectionNetwork,
          std_transform=lambda t: actor_std * tf.ones_like(t))

    actor_net = actor_distribution_network.ActorDistributionNetwork(
        observation_spec,
        action_spec,
        fc_layer_params=actor_fc_layers,
        continuous_projection_net=proj_net)
    critic_net = c_learning_utils.ClassifierCriticNetwork(
        (observation_spec, action_spec),
        observation_fc_layer_params=critic_obs_fc_layers,
        action_fc_layer_params=critic_action_fc_layers,
        joint_fc_layer_params=critic_joint_fc_layers,
        kernel_initializer='glorot_uniform',
        last_kernel_initializer='glorot_uniform')

    tf_agent = c_learning_agent.CLearningAgent(
        time_step_spec,
        action_spec,
        actor_network=actor_net,
        critic_network=critic_net,
        actor_optimizer=tf.compat.v1.train.AdamOptimizer(
            learning_rate=actor_learning_rate),
        critic_optimizer=tf.compat.v1.train.AdamOptimizer(
            learning_rate=critic_learning_rate),
        target_update_tau=target_update_tau,
        target_update_period=target_update_period,
        td_errors_loss_fn=bce_loss,
        gamma=gamma,
        gradient_clipping=gradient_clipping,
        debug_summaries=debug_summaries,
        summarize_grads_and_vars=summarize_grads_and_vars,
        train_step_counter=global_step)
    tf_agent.initialize()

    eval_summary_writer = tf.compat.v2.summary.create_file_writer(
        eval_dir, flush_millis=summaries_flush_secs * 1000)
    eval_metrics = [
        tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes),
        c_learning_utils.FinalDistance(
            buffer_size=num_eval_episodes, obs_dim=obs_dim),
        c_learning_utils.MinimumDistance(
            buffer_size=num_eval_episodes, obs_dim=obs_dim),
        c_learning_utils.DeltaDistance(
            buffer_size=num_eval_episodes, obs_dim=obs_dim),
    ]
    train_metrics = [
        tf_metrics.NumberOfEpisodes(),
        tf_metrics.EnvironmentSteps(),
        tf_metrics.AverageEpisodeLengthMetric(
            buffer_size=num_eval_episodes, batch_size=tf_env.batch_size),
        c_learning_utils.InitialDistance(
            buffer_size=num_eval_episodes,
            batch_size=tf_env.batch_size,
            obs_dim=obs_dim),
        c_learning_utils.FinalDistance(
            buffer_size=num_eval_episodes,
            batch_size=tf_env.batch_size,
            obs_dim=obs_dim),
        c_learning_utils.MinimumDistance(
            buffer_size=num_eval_episodes,
            batch_size=tf_env.batch_size,
            obs_dim=obs_dim),
        c_learning_utils.DeltaDistance(
            buffer_size=num_eval_episodes,
            batch_size=tf_env.batch_size,
            obs_dim=obs_dim),
    ]
    if log_subset is not None:
      start_index, end_index = log_subset
      for name, metrics in [('train', train_metrics), ('eval', eval_metrics)]:
        metrics.extend([
            c_learning_utils.InitialDistance(
                buffer_size=num_eval_episodes,
                batch_size=tf_env.batch_size if name == 'train' else 10,
                obs_dim=obs_dim,
                start_index=start_index,
                end_index=end_index,
                name='SubsetInitialDistance'),
            c_learning_utils.FinalDistance(
                buffer_size=num_eval_episodes,
                batch_size=tf_env.batch_size if name == 'train' else 10,
                obs_dim=obs_dim,
                start_index=start_index,
                end_index=end_index,
                name='SubsetFinalDistance'),
            c_learning_utils.MinimumDistance(
                buffer_size=num_eval_episodes,
                batch_size=tf_env.batch_size if name == 'train' else 10,
                obs_dim=obs_dim,
                start_index=start_index,
                end_index=end_index,
                name='SubsetMinimumDistance'),
            c_learning_utils.DeltaDistance(
                buffer_size=num_eval_episodes,
                batch_size=tf_env.batch_size if name == 'train' else 10,
                obs_dim=obs_dim,
                start_index=start_index,
                end_index=end_index,
                name='SubsetDeltaDistance'),
        ])

    eval_policy = greedy_policy.GreedyPolicy(tf_agent.policy)
    initial_collect_policy = random_tf_policy.RandomTFPolicy(
        tf_env.time_step_spec(), tf_env.action_spec())
    collect_policy = tf_agent.collect_policy

    train_checkpointer = common.Checkpointer(
        ckpt_dir=train_dir,
        agent=tf_agent,
        global_step=global_step,
        metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'),
        max_to_keep=None)

    train_checkpointer.initialize_or_restore()

    replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
        data_spec=tf_agent.collect_data_spec,
        batch_size=tf_env.batch_size,
        max_length=replay_buffer_capacity)
    replay_observer = [replay_buffer.add_batch]

    initial_collect_driver = dynamic_step_driver.DynamicStepDriver(
        tf_env,
        initial_collect_policy,
        observers=replay_observer + train_metrics,
        num_steps=initial_collect_steps)

    collect_driver = dynamic_step_driver.DynamicStepDriver(
        tf_env,
        collect_policy,
        observers=replay_observer + train_metrics,
        num_steps=collect_steps_per_iteration)

    if use_tf_functions:
      initial_collect_driver.run = common.function(initial_collect_driver.run)
      collect_driver.run = common.function(collect_driver.run)
      tf_agent.train = common.function(tf_agent.train)

    # Save the hyperparameters
    operative_filename = os.path.join(root_dir, 'operative.gin')
    with tf.compat.v1.gfile.Open(operative_filename, 'w') as f:
      f.write(gin.operative_config_str())
      logging.info(gin.operative_config_str())

    if replay_buffer.num_frames() == 0:
      # Collect initial replay data.
      logging.info(
          'Initializing replay buffer by collecting experience for %d steps '
          'with a random policy.', initial_collect_steps)
      initial_collect_driver.run()

    metric_utils.eager_compute(
        eval_metrics,
        eval_tf_env,
        eval_policy,
        num_episodes=num_eval_episodes,
        train_step=global_step,
        summary_writer=eval_summary_writer,
        summary_prefix='Metrics',
    )
    metric_utils.log_metrics(eval_metrics)

    time_step = None
    policy_state = collect_policy.get_initial_state(tf_env.batch_size)

    timed_at_step = global_step.numpy()
    time_acc = 0

    def _filter_invalid_transition(trajectories, unused_arg1):
      return ~trajectories.is_boundary()[0]
    dataset = replay_buffer.as_dataset(
        sample_batch_size=batch_size,
        num_steps=max_future_steps)
    dataset = dataset.unbatch().filter(_filter_invalid_transition)
    dataset = dataset.batch(batch_size, drop_remainder=True)
    goal_fn = functools.partial(
        c_learning_utils.goal_fn,
        batch_size=batch_size,
        obs_dim=obs_dim,
        gamma=gamma)
    dataset = dataset.map(goal_fn)
    dataset = dataset.prefetch(5)
    iterator = iter(dataset)

    def train_step():
      experience, _ = next(iterator)
      return tf_agent.train(experience)

    if use_tf_functions:
      train_step = common.function(train_step)

    global_step_val = global_step.numpy()
    while global_step_val < num_iterations:
      start_time = time.time()
      time_step, policy_state = collect_driver.run(
          time_step=time_step,
          policy_state=policy_state,
      )
      for _ in range(train_steps_per_iteration):
        train_loss = train_step()
      time_acc += time.time() - start_time

      global_step_val = global_step.numpy()

      if global_step_val % log_interval == 0:
        logging.info('step = %d, loss = %f', global_step_val,
                     train_loss.loss)
        steps_per_sec = (global_step_val - timed_at_step) / time_acc
        logging.info('%.3f steps/sec', steps_per_sec)
        tf.compat.v2.summary.scalar(
            name='global_steps_per_sec', data=steps_per_sec, step=global_step)
        timed_at_step = global_step_val
        time_acc = 0

      for train_metric in train_metrics:
        train_metric.tf_summaries(
            train_step=global_step, step_metrics=train_metrics[:2])

      if global_step_val % eval_interval == 0:
        metric_utils.eager_compute(
            eval_metrics,
            eval_tf_env,
            eval_policy,
            num_episodes=num_eval_episodes,
            train_step=global_step,
            summary_writer=eval_summary_writer,
            summary_prefix='Metrics',
        )
        metric_utils.log_metrics(eval_metrics)

      if global_step_val % train_checkpoint_interval == 0:
        train_checkpointer.save(global_step=global_step_val)

    return train_loss
def train_eval(
    root_dir,
    environment_name="broken_reacher",
    num_iterations=1000000,
    actor_fc_layers=(256, 256),
    critic_obs_fc_layers=None,
    critic_action_fc_layers=None,
    critic_joint_fc_layers=(256, 256),
    initial_collect_steps=10000,
    real_initial_collect_steps=10000,
    collect_steps_per_iteration=1,
    real_collect_interval=10,
    replay_buffer_capacity=1000000,
    # Params for target update
    target_update_tau=0.005,
    target_update_period=1,
    # Params for train
    train_steps_per_iteration=1,
    batch_size=256,
    actor_learning_rate=3e-4,
    critic_learning_rate=3e-4,
    classifier_learning_rate=3e-4,
    alpha_learning_rate=3e-4,
    td_errors_loss_fn=tf.math.squared_difference,
    gamma=0.99,
    reward_scale_factor=0.1,
    gradient_clipping=None,
    use_tf_functions=True,
    # Params for eval
    num_eval_episodes=30,
    eval_interval=10000,
    # Params for summaries and logging
    train_checkpoint_interval=10000,
    policy_checkpoint_interval=5000,
    rb_checkpoint_interval=50000,
    log_interval=1000,
    summary_interval=1000,
    summaries_flush_secs=10,
    debug_summaries=True,
    summarize_grads_and_vars=False,
    train_on_real=False,
    delta_r_warmup=0,
    random_seed=0,
    checkpoint_dir=None,
):
    """A simple train and eval for SAC."""
    np.random.seed(random_seed)
    tf.random.set_seed(random_seed)
    root_dir = os.path.expanduser(root_dir)
    train_dir = os.path.join(root_dir, "train")
    eval_dir = os.path.join(root_dir, "eval")

    train_summary_writer = tf.compat.v2.summary.create_file_writer(
        train_dir, flush_millis=summaries_flush_secs * 1000)
    train_summary_writer.set_as_default()

    eval_summary_writer = tf.compat.v2.summary.create_file_writer(
        eval_dir, flush_millis=summaries_flush_secs * 1000)

    if environment_name == "broken_reacher":
        get_env_fn = darc_envs.get_broken_reacher_env
    elif environment_name == "half_cheetah_obstacle":
        get_env_fn = darc_envs.get_half_cheetah_direction_env
    elif environment_name == "inverted_pendulum":
        get_env_fn = darc_envs.get_inverted_pendulum_env
    elif environment_name.startswith("broken_joint"):
        base_name = environment_name.split("broken_joint_")[1]
        get_env_fn = functools.partial(darc_envs.get_broken_joint_env,
                                       env_name=base_name)
    elif environment_name.startswith("falling"):
        base_name = environment_name.split("falling_")[1]
        get_env_fn = functools.partial(darc_envs.get_falling_env,
                                       env_name=base_name)
    else:
        raise NotImplementedError("Unknown environment: %s" % environment_name)

    eval_name_list = ["sim", "real"]
    eval_env_list = [get_env_fn(mode) for mode in eval_name_list]

    eval_metrics_list = []
    for name in eval_name_list:
        eval_metrics_list.append([
            tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes,
                                           name="AverageReturn_%s" % name),
        ])

    global_step = tf.compat.v1.train.get_or_create_global_step()
    with tf.compat.v2.summary.record_if(
            lambda: tf.math.equal(global_step % summary_interval, 0)):
        tf_env_real = get_env_fn("real")
        if train_on_real:
            tf_env = get_env_fn("real")
        else:
            tf_env = get_env_fn("sim")

        time_step_spec = tf_env.time_step_spec()
        observation_spec = time_step_spec.observation
        action_spec = tf_env.action_spec()

        actor_net = actor_distribution_network.ActorDistributionNetwork(
            observation_spec,
            action_spec,
            fc_layer_params=actor_fc_layers,
            continuous_projection_net=(
                tanh_normal_projection_network.TanhNormalProjectionNetwork),
        )
        critic_net = critic_network.CriticNetwork(
            (observation_spec, action_spec),
            observation_fc_layer_params=critic_obs_fc_layers,
            action_fc_layer_params=critic_action_fc_layers,
            joint_fc_layer_params=critic_joint_fc_layers,
            kernel_initializer="glorot_uniform",
            last_kernel_initializer="glorot_uniform",
        )

        classifier = classifiers.build_classifier(observation_spec,
                                                  action_spec)

        tf_agent = darc_agent.DarcAgent(
            time_step_spec,
            action_spec,
            actor_network=actor_net,
            critic_network=critic_net,
            classifier=classifier,
            actor_optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=actor_learning_rate),
            critic_optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=critic_learning_rate),
            classifier_optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=classifier_learning_rate),
            alpha_optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=alpha_learning_rate),
            target_update_tau=target_update_tau,
            target_update_period=target_update_period,
            td_errors_loss_fn=td_errors_loss_fn,
            gamma=gamma,
            reward_scale_factor=reward_scale_factor,
            gradient_clipping=gradient_clipping,
            debug_summaries=debug_summaries,
            summarize_grads_and_vars=summarize_grads_and_vars,
            train_step_counter=global_step,
        )
        tf_agent.initialize()

        # Make the replay buffer.
        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            data_spec=tf_agent.collect_data_spec,
            batch_size=1,
            max_length=replay_buffer_capacity,
        )
        replay_observer = [replay_buffer.add_batch]

        real_replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            data_spec=tf_agent.collect_data_spec,
            batch_size=1,
            max_length=replay_buffer_capacity,
        )
        real_replay_observer = [real_replay_buffer.add_batch]

        sim_train_metrics = [
            tf_metrics.NumberOfEpisodes(name="NumberOfEpisodesSim"),
            tf_metrics.EnvironmentSteps(name="EnvironmentStepsSim"),
            tf_metrics.AverageReturnMetric(
                buffer_size=num_eval_episodes,
                batch_size=tf_env.batch_size,
                name="AverageReturnSim",
            ),
            tf_metrics.AverageEpisodeLengthMetric(
                buffer_size=num_eval_episodes,
                batch_size=tf_env.batch_size,
                name="AverageEpisodeLengthSim",
            ),
        ]
        real_train_metrics = [
            tf_metrics.NumberOfEpisodes(name="NumberOfEpisodesReal"),
            tf_metrics.EnvironmentSteps(name="EnvironmentStepsReal"),
            tf_metrics.AverageReturnMetric(
                buffer_size=num_eval_episodes,
                batch_size=tf_env.batch_size,
                name="AverageReturnReal",
            ),
            tf_metrics.AverageEpisodeLengthMetric(
                buffer_size=num_eval_episodes,
                batch_size=tf_env.batch_size,
                name="AverageEpisodeLengthReal",
            ),
        ]

        eval_policy = greedy_policy.GreedyPolicy(tf_agent.policy)
        initial_collect_policy = random_tf_policy.RandomTFPolicy(
            tf_env.time_step_spec(), tf_env.action_spec())
        collect_policy = tf_agent.collect_policy

        train_checkpointer = common.Checkpointer(
            ckpt_dir=train_dir,
            agent=tf_agent,
            global_step=global_step,
            metrics=metric_utils.MetricsGroup(
                sim_train_metrics + real_train_metrics, "train_metrics"),
        )
        policy_checkpointer = common.Checkpointer(
            ckpt_dir=os.path.join(train_dir, "policy"),
            policy=eval_policy,
            global_step=global_step,
        )
        rb_checkpointer = common.Checkpointer(
            ckpt_dir=os.path.join(train_dir, "replay_buffer"),
            max_to_keep=1,
            replay_buffer=(replay_buffer, real_replay_buffer),
        )

        if checkpoint_dir is not None:
            checkpoint_path = tf.train.latest_checkpoint(checkpoint_dir)
            assert checkpoint_path is not None
            train_checkpointer._load_status = train_checkpointer._checkpoint.restore(  # pylint: disable=protected-access
                checkpoint_path)
            train_checkpointer._load_status.initialize_or_restore()  # pylint: disable=protected-access
        else:
            train_checkpointer.initialize_or_restore()
        rb_checkpointer.initialize_or_restore()

        if replay_buffer.num_frames() == 0:
            initial_collect_driver = dynamic_step_driver.DynamicStepDriver(
                tf_env,
                initial_collect_policy,
                observers=replay_observer + sim_train_metrics,
                num_steps=initial_collect_steps,
            )
            real_initial_collect_driver = dynamic_step_driver.DynamicStepDriver(
                tf_env_real,
                initial_collect_policy,
                observers=real_replay_observer + real_train_metrics,
                num_steps=real_initial_collect_steps,
            )

        collect_driver = dynamic_step_driver.DynamicStepDriver(
            tf_env,
            collect_policy,
            observers=replay_observer + sim_train_metrics,
            num_steps=collect_steps_per_iteration,
        )

        real_collect_driver = dynamic_step_driver.DynamicStepDriver(
            tf_env_real,
            collect_policy,
            observers=real_replay_observer + real_train_metrics,
            num_steps=collect_steps_per_iteration,
        )

        config_str = gin.operative_config_str()
        logging.info(config_str)
        with tf.compat.v1.gfile.Open(os.path.join(root_dir, "operative.gin"),
                                     "w") as f:
            f.write(config_str)

        if use_tf_functions:
            initial_collect_driver.run = common.function(
                initial_collect_driver.run)
            real_initial_collect_driver.run = common.function(
                real_initial_collect_driver.run)
            collect_driver.run = common.function(collect_driver.run)
            real_collect_driver.run = common.function(real_collect_driver.run)
            tf_agent.train = common.function(tf_agent.train)

        # Collect initial replay data.
        if replay_buffer.num_frames() == 0:
            logging.info(
                "Initializing replay buffer by collecting experience for %d steps with "
                "a random policy.",
                initial_collect_steps,
            )
            initial_collect_driver.run()
            real_initial_collect_driver.run()

        for eval_name, eval_env, eval_metrics in zip(eval_name_list,
                                                     eval_env_list,
                                                     eval_metrics_list):
            metric_utils.eager_compute(
                eval_metrics,
                eval_env,
                eval_policy,
                num_episodes=num_eval_episodes,
                train_step=global_step,
                summary_writer=eval_summary_writer,
                summary_prefix="Metrics-%s" % eval_name,
            )
            metric_utils.log_metrics(eval_metrics)

        time_step = None
        real_time_step = None
        policy_state = collect_policy.get_initial_state(tf_env.batch_size)

        timed_at_step = global_step.numpy()
        time_acc = 0

        # Prepare replay buffer as dataset with invalid transitions filtered.
        def _filter_invalid_transition(trajectories, unused_arg1):
            return ~trajectories.is_boundary()[0]

        dataset = (replay_buffer.as_dataset(
            sample_batch_size=batch_size, num_steps=2).unbatch().filter(
                _filter_invalid_transition).batch(batch_size).prefetch(5))
        real_dataset = (real_replay_buffer.as_dataset(
            sample_batch_size=batch_size, num_steps=2).unbatch().filter(
                _filter_invalid_transition).batch(batch_size).prefetch(5))

        # Dataset generates trajectories with shape [Bx2x...]
        iterator = iter(dataset)
        real_iterator = iter(real_dataset)

        def train_step():
            experience, _ = next(iterator)
            real_experience, _ = next(real_iterator)
            return tf_agent.train(experience, real_experience=real_experience)

        if use_tf_functions:
            train_step = common.function(train_step)

        for _ in range(num_iterations):
            start_time = time.time()
            time_step, policy_state = collect_driver.run(
                time_step=time_step,
                policy_state=policy_state,
            )
            assert not policy_state  # We expect policy_state == ().
            if (global_step.numpy() % real_collect_interval == 0
                    and global_step.numpy() >= delta_r_warmup):
                real_time_step, policy_state = real_collect_driver.run(
                    time_step=real_time_step,
                    policy_state=policy_state,
                )

            for _ in range(train_steps_per_iteration):
                train_loss = train_step()
            time_acc += time.time() - start_time

            global_step_val = global_step.numpy()

            if global_step_val % log_interval == 0:
                logging.info("step = %d, loss = %f", global_step_val,
                             train_loss.loss)
                steps_per_sec = (global_step_val - timed_at_step) / time_acc
                logging.info("%.3f steps/sec", steps_per_sec)
                tf.compat.v2.summary.scalar(name="global_steps_per_sec",
                                            data=steps_per_sec,
                                            step=global_step)
                timed_at_step = global_step_val
                time_acc = 0

            for train_metric in sim_train_metrics:
                train_metric.tf_summaries(train_step=global_step,
                                          step_metrics=sim_train_metrics[:2])
            for train_metric in real_train_metrics:
                train_metric.tf_summaries(train_step=global_step,
                                          step_metrics=real_train_metrics[:2])

            if global_step_val % eval_interval == 0:
                for eval_name, eval_env, eval_metrics in zip(
                        eval_name_list, eval_env_list, eval_metrics_list):
                    metric_utils.eager_compute(
                        eval_metrics,
                        eval_env,
                        eval_policy,
                        num_episodes=num_eval_episodes,
                        train_step=global_step,
                        summary_writer=eval_summary_writer,
                        summary_prefix="Metrics-%s" % eval_name,
                    )
                    metric_utils.log_metrics(eval_metrics)

            if global_step_val % train_checkpoint_interval == 0:
                train_checkpointer.save(global_step=global_step_val)

            if global_step_val % policy_checkpoint_interval == 0:
                policy_checkpointer.save(global_step=global_step_val)

            if global_step_val % rb_checkpoint_interval == 0:
                rb_checkpointer.save(global_step=global_step_val)
        return train_loss
示例#28
0
def train_eval(
        root_dir,
        env_name='Blob2d-v1',
        num_iterations=100000,
        train_sequence_length=1,
        collect_steps_per_iteration=1,
        initial_collect_steps=1500,
        replay_buffer_max_length=10000,
        batch_size=64,
        learning_rate=1e-3,
        num_eval_episodes=10,
        eval_interval=1000,
        # Params for QNetwork
        fc_layer_params=(100, ),
        use_tf_functions=False,
        ## train params
        train_steps_per_iteration=1,
        train_checkpoint_interval=1000,
        policy_checkpoint_interval=1000,
        rb_checkpoint_interval=1000,
        n_step_update=1,
        ## Params for Summaries and logging
        log_interval=1000,
        summary_interval=1000,
        summaries_flush_secs=10,
        debug_summaries=False,
        summarize_grads_and_vars=False,
        eval_metrics_callback=None):
    root_dir = os.path.expanduser(root_dir)
    train_dir = os.path.join(root_dir, 'train')
    eval_dir = os.path.join(root_dir, 'eval')

    train_summary_writer = tf.compat.v2.summary.create_file_writer(
        train_dir, flush_millis=summaries_flush_secs * 1000)
    train_summary_writer.set_as_default()

    eval_summary_writer = tf.compat.v2.summary.create_file_writer(
        eval_dir, flush_millis=summaries_flush_secs * 1000)
    eval_metrics = [
        tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
        tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes)
    ]

    global_step = tf.compat.v1.train.get_or_create_global_step()

    with tf.compat.v2.summary.record_if(
            lambda: tf.math.equal(global_step % summary_interval, 0)):
        tf_env = tf_py_environment.TFPyEnvironment(suite_gym.load(env_name))
        eval_tf_env = tf_py_environment.TFPyEnvironment(
            suite_gym.load(env_name))

        if train_sequence_length != 1 and n_step_update != 1:
            raise NotImplementedError(
                'train_eval does not currently support n-step updates with stateful '
                'networks (i.e., RNNs)')

    env = suite_gym.load('Blob2d-v1')

    tf_env = tf_py_environment.TFPyEnvironment(env)

    action_spec = tf_env.action_spec()

    fc_layer_params = (100, )

    q_net = q_network.QNetwork(tf_env.observation_spec(),
                               tf_env.action_spec(),
                               fc_layer_params=fc_layer_params)

    agent = dqn_agent.DqnAgent(
        tf_env.time_step_spec(),
        tf_env.action_spec(),
        q_network=q_net,
        optimizer=tf.compat.v1.train.AdamOptimizer(
            learning_rate=learning_rate),
        td_errors_loss_fn=common.element_wise_squared_loss,
        train_step_counter=global_step)
    agent.initialize()

    train_metrics = [
        tf_metrics.NumberOfEpisodes(),
        tf_metrics.EnvironmentSteps(),
        tf_metrics.AverageReturnMetric(),
        tf_metrics.AverageEpisodeLengthMetric(),
    ]

    eval_policy = agent.policy
    collect_policy = agent.collect_policy

    replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
        data_spec=agent.collect_data_spec,
        batch_size=tf_env.batch_size,
        max_length=replay_buffer_max_length)

    collect_driver = dynamic_step_driver.DynamicStepDriver(
        tf_env,
        collect_policy,
        observers=[replay_buffer.add_batch] + train_metrics,
        num_steps=collect_steps_per_iteration)

    train_checkpointer = common.Checkpointer(ckpt_dir=train_dir,
                                             agent=agent,
                                             global_step=global_step,
                                             metrics=metric_utils.MetricsGroup(
                                                 train_metrics,
                                                 'train_metrics'))
    policy_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
        train_dir, 'policy'),
                                              policy=eval_policy,
                                              global_step=global_step)
    rb_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
        train_dir, 'replay_buffer'),
                                          max_to_keep=1,
                                          replay_buffer=replay_buffer)

    train_checkpointer.initialize_or_restore()
    rb_checkpointer.initialize_or_restore()

    initial_collect_policy = random_tf_policy.RandomTFPolicy(
        tf_env.time_step_spec(), tf_env.action_spec())

    logging.info(
        'Initializing replay buffer by collecting experience for %d steps with '
        'a random policy.', initial_collect_steps)
    dynamic_step_driver.DynamicStepDriver(
        tf_env,
        initial_collect_policy,
        observers=[replay_buffer.add_batch] + train_metrics,
        num_steps=initial_collect_steps).run()

    results = metric_utils.eager_compute(
        eval_metrics,
        eval_tf_env,
        eval_policy,
        num_episodes=num_eval_episodes,
        train_step=global_step,
        summary_writer=eval_summary_writer,
        summary_prefix='Metrics',
    )

    if eval_metrics_callback is not None:
        eval_metrics_callback(results, global_step.numpy())
    metric_utils.log_metrics(eval_metrics)

    time_step = None
    policy_state = collect_policy.get_initial_state(tf_env.batch_size)

    timed_at_step = global_step.numpy()
    time_acc = 0

    # Dataset generates trajectories with shape [Bx2x...]
    dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                       sample_batch_size=batch_size,
                                       num_steps=train_sequence_length +
                                       1).prefetch(3)
    iterator = iter(dataset)

    def train_step():
        experience, _ = next(iterator)
        return agent.train(experience)

    if use_tf_functions:
        train_step = common.function(train_step)

    # Main Training loop.
    for _ in range(num_iterations):
        start_time = time.time()
        time_step, policy_state = collect_driver.run(
            time_step=time_step,
            policy_state=policy_state,
        )
        for _ in range(train_steps_per_iteration):
            train_loss = train_step()
        time_acc += time.time() - start_time

        if global_step.numpy() % log_interval == 0:
            logging.info('step = %d, loss = %f', global_step.numpy(),
                         train_loss.loss)
            steps_per_sec = (global_step.numpy() - timed_at_step) / time_acc
            logging.info('%.3f steps/sec', steps_per_sec)
            tf.compat.v2.summary.scalar(name='global_steps_per_sec',
                                        data=steps_per_sec,
                                        step=global_step)
            timed_at_step = global_step.numpy()
            time_acc = 0

        for train_metric in train_metrics:
            train_metric.tf_summaries(train_step=global_step,
                                      step_metrics=train_metrics[:2])

        if global_step.numpy() % train_checkpoint_interval == 0:
            train_checkpointer.save(global_step=global_step.numpy())

        if global_step.numpy() % policy_checkpoint_interval == 0:
            policy_checkpointer.save(global_step=global_step.numpy())

        if global_step.numpy() % rb_checkpoint_interval == 0:
            rb_checkpointer.save(global_step=global_step.numpy())

        if global_step.numpy() % eval_interval == 0:
            results = metric_utils.eager_compute(
                eval_metrics,
                eval_tf_env,
                eval_policy,
                num_episodes=num_eval_episodes,
                train_step=global_step,
                summary_writer=eval_summary_writer,
                summary_prefix='Metrics',
            )
            if eval_metrics_callback is not None:
                eval_metrics_callback(results, global_step.numpy())
            metric_utils.log_metrics(eval_metrics)
    return train_loss
示例#29
0
def train(
        root_dir,
        load_root_dir=None,
        env_load_fn=None,
        env_name=None,
        num_parallel_environments=1,  # pylint: disable=unused-argument
        agent_class=None,
        initial_collect_random=True,  # pylint: disable=unused-argument
        initial_collect_driver_class=None,
        collect_driver_class=None,
        num_global_steps=1000000,
        train_steps_per_iteration=1,
        train_metrics=None,
        # Safety Critic training args
        train_sc_steps=10,
        train_sc_interval=300,
        online_critic=False,
        # Params for eval
        run_eval=False,
        num_eval_episodes=30,
        eval_interval=1000,
        eval_metrics_callback=None,
        # Params for summaries and logging
        train_checkpoint_interval=10000,
        policy_checkpoint_interval=5000,
        rb_checkpoint_interval=20000,
        keep_rb_checkpoint=False,
        log_interval=1000,
        summary_interval=1000,
        summaries_flush_secs=10,
        early_termination_fn=None,
        env_metric_factories=None):  # pylint: disable=unused-argument
    """A simple train and eval for SC-SAC."""

    root_dir = os.path.expanduser(root_dir)
    train_dir = os.path.join(root_dir, 'train')

    train_summary_writer = tf.compat.v2.summary.create_file_writer(
        train_dir, flush_millis=summaries_flush_secs * 1000)
    train_summary_writer.set_as_default()

    train_metrics = train_metrics or []

    if run_eval:
        eval_dir = os.path.join(root_dir, 'eval')
        eval_summary_writer = tf.compat.v2.summary.create_file_writer(
            eval_dir, flush_millis=summaries_flush_secs * 1000)
        eval_metrics = [
            tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
            tf_metrics.AverageEpisodeLengthMetric(
                buffer_size=num_eval_episodes),
        ] + [tf_py_metric.TFPyMetric(m) for m in train_metrics]

    global_step = tf.compat.v1.train.get_or_create_global_step()
    with tf.compat.v2.summary.record_if(
            lambda: tf.math.equal(global_step % summary_interval, 0)):
        tf_env = env_load_fn(env_name)
        if not isinstance(tf_env, tf_py_environment.TFPyEnvironment):
            tf_env = tf_py_environment.TFPyEnvironment(tf_env)

        if run_eval:
            eval_py_env = env_load_fn(env_name)
            eval_tf_env = tf_py_environment.TFPyEnvironment(eval_py_env)

        time_step_spec = tf_env.time_step_spec()
        observation_spec = time_step_spec.observation
        action_spec = tf_env.action_spec()

        print('obs spec:', observation_spec)
        print('action spec:', action_spec)

        if online_critic:
            resample_metric = tf_py_metric.TfPyMetric(
                py_metrics.CounterMetric('unsafe_ac_samples'))
            tf_agent = agent_class(time_step_spec,
                                   action_spec,
                                   train_step_counter=global_step,
                                   resample_metric=resample_metric)
        else:
            tf_agent = agent_class(time_step_spec,
                                   action_spec,
                                   train_step_counter=global_step)

        tf_agent.initialize()

        # Make the replay buffer.
        collect_data_spec = tf_agent.collect_data_spec

        logging.info('Allocating replay buffer ...')
        # Add to replay buffer and other agent specific observers.
        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            collect_data_spec, max_length=1000000)
        logging.info('RB capacity: %i', replay_buffer.capacity)
        logging.info('ReplayBuffer Collect data spec: %s', collect_data_spec)

        agent_observers = [replay_buffer.add_batch]
        if online_critic:
            online_replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
                collect_data_spec, max_length=10000)

            online_rb_ckpt_dir = os.path.join(train_dir,
                                              'online_replay_buffer')
            online_rb_checkpointer = common.Checkpointer(
                ckpt_dir=online_rb_ckpt_dir,
                max_to_keep=1,
                replay_buffer=online_replay_buffer)

            clear_rb = common.function(online_replay_buffer.clear)
            agent_observers.append(online_replay_buffer.add_batch)

        train_metrics = [
            tf_metrics.NumberOfEpisodes(),
            tf_metrics.EnvironmentSteps(),
            tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes,
                                           batch_size=tf_env.batch_size),
            tf_metrics.AverageEpisodeLengthMetric(
                buffer_size=num_eval_episodes, batch_size=tf_env.batch_size),
        ] + [tf_py_metric.TFPyMetric(m) for m in train_metrics]

        if not online_critic:
            eval_policy = tf_agent.policy
        else:
            eval_policy = tf_agent._safe_policy  # pylint: disable=protected-access

        initial_collect_policy = random_tf_policy.RandomTFPolicy(
            time_step_spec, action_spec)
        if not online_critic:
            collect_policy = tf_agent.collect_policy
        else:
            collect_policy = tf_agent._safe_policy  # pylint: disable=protected-access

        train_checkpointer = common.Checkpointer(
            ckpt_dir=train_dir,
            agent=tf_agent,
            global_step=global_step,
            metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'))
        policy_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
            train_dir, 'policy'),
                                                  policy=eval_policy,
                                                  global_step=global_step)
        safety_critic_checkpointer = common.Checkpointer(
            ckpt_dir=os.path.join(train_dir, 'safety_critic'),
            safety_critic=tf_agent._safety_critic_network,  # pylint: disable=protected-access
            global_step=global_step)
        rb_ckpt_dir = os.path.join(train_dir, 'replay_buffer')
        rb_checkpointer = common.Checkpointer(ckpt_dir=rb_ckpt_dir,
                                              max_to_keep=1,
                                              replay_buffer=replay_buffer)

        if load_root_dir:
            load_root_dir = os.path.expanduser(load_root_dir)
            load_train_dir = os.path.join(load_root_dir, 'train')
            misc.load_pi_ckpt(load_train_dir, tf_agent)  # loads tf_agent

        if load_root_dir is None:
            train_checkpointer.initialize_or_restore()
        rb_checkpointer.initialize_or_restore()
        safety_critic_checkpointer.initialize_or_restore()

        collect_driver = collect_driver_class(tf_env,
                                              collect_policy,
                                              observers=agent_observers +
                                              train_metrics)

        collect_driver.run = common.function(collect_driver.run)
        tf_agent.train = common.function(tf_agent.train)

        if not rb_checkpointer.checkpoint_exists:
            logging.info('Performing initial collection ...')
            common.function(
                initial_collect_driver_class(tf_env,
                                             initial_collect_policy,
                                             observers=agent_observers +
                                             train_metrics).run)()
            last_id = replay_buffer._get_last_id()  # pylint: disable=protected-access
            logging.info('Data saved after initial collection: %d steps',
                         last_id)
            tf.print(
                replay_buffer._get_rows_for_id(last_id),  # pylint: disable=protected-access
                output_stream=logging.info)

        if run_eval:
            results = metric_utils.eager_compute(
                eval_metrics,
                eval_tf_env,
                eval_policy,
                num_episodes=num_eval_episodes,
                train_step=global_step,
                summary_writer=eval_summary_writer,
                summary_prefix='Metrics',
            )
            if eval_metrics_callback is not None:
                eval_metrics_callback(results, global_step.numpy())
            metric_utils.log_metrics(eval_metrics)
            if FLAGS.viz_pm:
                eval_fig_dir = osp.join(eval_dir, 'figs')
                if not tf.io.gfile.isdir(eval_fig_dir):
                    tf.io.gfile.makedirs(eval_fig_dir)

        time_step = None
        policy_state = collect_policy.get_initial_state(tf_env.batch_size)

        timed_at_step = global_step.numpy()
        time_acc = 0

        # Dataset generates trajectories with shape [Bx2x...]
        dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                           num_steps=2).prefetch(3)
        iterator = iter(dataset)
        if online_critic:
            online_dataset = online_replay_buffer.as_dataset(
                num_parallel_calls=3, num_steps=2).prefetch(3)
            online_iterator = iter(online_dataset)

            @common.function
            def critic_train_step():
                """Builds critic training step."""
                experience, buf_info = next(online_iterator)
                if env_name in [
                        'IndianWell', 'IndianWell2', 'IndianWell3',
                        'DrunkSpider', 'DrunkSpiderShort'
                ]:
                    safe_rew = experience.observation['task_agn_rew']
                else:
                    safe_rew = agents.process_replay_buffer(
                        online_replay_buffer, as_tensor=True)
                    safe_rew = tf.gather(safe_rew,
                                         tf.squeeze(buf_info.ids),
                                         axis=1)
                ret = tf_agent.train_sc(experience, safe_rew)
                clear_rb()
                return ret

        @common.function
        def train_step():
            experience, _ = next(iterator)
            ret = tf_agent.train(experience)
            return ret

        if not early_termination_fn:
            early_termination_fn = lambda: False

        loss_diverged = False
        # How many consecutive steps was loss diverged for.
        loss_divergence_counter = 0
        mean_train_loss = tf.keras.metrics.Mean(name='mean_train_loss')
        if online_critic:
            mean_resample_ac = tf.keras.metrics.Mean(
                name='mean_unsafe_ac_samples')
            resample_metric.reset()

        while (global_step.numpy() <= num_global_steps
               and not early_termination_fn()):
            # Collect and train.
            start_time = time.time()
            time_step, policy_state = collect_driver.run(
                time_step=time_step,
                policy_state=policy_state,
            )
            if online_critic:
                mean_resample_ac(resample_metric.result())
                resample_metric.reset()
                if time_step.is_last():
                    resample_ac_freq = mean_resample_ac.result()
                    mean_resample_ac.reset_states()
                    tf.compat.v2.summary.scalar(name='unsafe_ac_samples',
                                                data=resample_ac_freq,
                                                step=global_step)

            for _ in range(train_steps_per_iteration):
                train_loss = train_step()
                mean_train_loss(train_loss.loss)

            if online_critic:
                if global_step.numpy() % train_sc_interval == 0:
                    for _ in range(train_sc_steps):
                        sc_loss, lambda_loss = critic_train_step()  # pylint: disable=unused-variable

            total_loss = mean_train_loss.result()
            mean_train_loss.reset_states()
            # Check for exploding losses.
            if (math.isnan(total_loss) or math.isinf(total_loss)
                    or total_loss > MAX_LOSS):
                loss_divergence_counter += 1
                if loss_divergence_counter > TERMINATE_AFTER_DIVERGED_LOSS_STEPS:
                    loss_diverged = True
                    break
            else:
                loss_divergence_counter = 0

            time_acc += time.time() - start_time

            if global_step.numpy() % log_interval == 0:
                logging.info('step = %d, loss = %f', global_step.numpy(),
                             total_loss)
                steps_per_sec = (global_step.numpy() -
                                 timed_at_step) / time_acc
                logging.info('%.3f steps/sec', steps_per_sec)
                tf.compat.v2.summary.scalar(name='global_steps_per_sec',
                                            data=steps_per_sec,
                                            step=global_step)
                timed_at_step = global_step.numpy()
                time_acc = 0

            for train_metric in train_metrics:
                train_metric.tf_summaries(train_step=global_step,
                                          step_metrics=train_metrics[:2])

            global_step_val = global_step.numpy()
            if global_step_val % train_checkpoint_interval == 0:
                train_checkpointer.save(global_step=global_step_val)

            if global_step_val % policy_checkpoint_interval == 0:
                policy_checkpointer.save(global_step=global_step_val)
                safety_critic_checkpointer.save(global_step=global_step_val)

            if global_step_val % rb_checkpoint_interval == 0:
                if online_critic:
                    online_rb_checkpointer.save(global_step=global_step_val)
                rb_checkpointer.save(global_step=global_step_val)

            if run_eval and global_step.numpy() % eval_interval == 0:
                results = metric_utils.eager_compute(
                    eval_metrics,
                    eval_tf_env,
                    eval_policy,
                    num_episodes=num_eval_episodes,
                    train_step=global_step,
                    summary_writer=eval_summary_writer,
                    summary_prefix='Metrics',
                )
                if eval_metrics_callback is not None:
                    eval_metrics_callback(results, global_step.numpy())
                metric_utils.log_metrics(eval_metrics)
                if FLAGS.viz_pm:
                    savepath = 'step{}.png'.format(global_step_val)
                    savepath = osp.join(eval_fig_dir, savepath)
                    misc.record_episode_vis_summary(eval_tf_env, eval_policy,
                                                    savepath)

    if not keep_rb_checkpoint:
        misc.cleanup_checkpoints(rb_ckpt_dir)

    if loss_diverged:
        # Raise an error at the very end after the cleanup.
        raise ValueError('Loss diverged to {} at step {}, terminating.'.format(
            total_loss, global_step.numpy()))

    return total_loss
def train_eval(
        root_dir,
        env_name='CartPole-v0',
        num_iterations=5e5,
        train_sequence_length=1,
        # Params for QNetwork
        fc_layer_params=(
            64,
            64,
        ),
        # Params for QRnnNetwork
        input_fc_layer_params=(50, ),
        lstm_size=(6, ),
        output_fc_layer_params=(30, ),

        # Params for collect
        initial_collect_steps=2000,
        collect_steps_per_iteration=6,
        epsilon_greedy=0.1,
        replay_buffer_capacity=100000,
        # Params for target update
        target_update_tau=0.05,
        target_update_period=5,
        # Params for train
        train_steps_per_iteration=6,
        batch_size=32,
        learning_rate=1e-3,
        n_step_update=1,
        gamma=0.99,
        reward_scale_factor=1.0,
        gradient_clipping=None,
        use_tf_functions=True,
        # Params for eval
        num_eval_episodes=1,
        eval_interval=1000,
        # Params for checkpoints
        train_checkpoint_interval=10000,
        policy_checkpoint_interval=5000,
        rb_checkpoint_interval=20000,
        # Params for summaries and logging
        log_interval=1000,
        summary_interval=1000,
        summaries_flush_secs=10,
        debug_summaries=False,
        summarize_grads_and_vars=False,
        eval_metrics_callback=None):
    """A simple train and eval for DQN."""
    root_dir = os.path.expanduser(root_dir)
    train_dir = os.path.join(root_dir, 'train')
    eval_dir = os.path.join(root_dir, 'eval')
    clusters = pickle.load(open('clusters.pickle', 'rb'))
    graph = nx.read_gpickle('graph.gpickle')
    print(graph.nodes)
    train_summary_writer = tf.compat.v2.summary.create_file_writer(
        train_dir, flush_millis=summaries_flush_secs * 1000)
    train_summary_writer.set_as_default()

    eval_summary_writer = tf.compat.v2.summary.create_file_writer(
        eval_dir, flush_millis=summaries_flush_secs * 1000)
    eval_metrics = [
        tf_metrics.AverageReturnMetric(buffer_size=num_eval_episodes),
        tf_metrics.AverageEpisodeLengthMetric(buffer_size=num_eval_episodes)
    ]

    global_step = tf.compat.v1.train.get_or_create_global_step()
    with tf.compat.v2.summary.record_if(
            lambda: tf.math.equal(global_step % summary_interval, 0)):
        tf_env = tf_py_environment.TFPyEnvironment(
            suite_gym.load(env_name,
                           gym_kwargs={
                               'graph': graph,
                               'clusters': clusters
                           }))
        eval_tf_env = tf_py_environment.TFPyEnvironment(
            suite_gym.load(env_name,
                           gym_kwargs={
                               'graph': graph,
                               'clusters': clusters
                           }))

        if train_sequence_length != 1 and n_step_update != 1:
            raise NotImplementedError(
                'train_eval does not currently support n-step updates with stateful '
                'networks (i.e., RNNs)')

        action_spec = tf_env.action_spec()
        num_actions = action_spec.maximum - action_spec.minimum + 1

        if train_sequence_length > 1:
            q_net = create_recurrent_network(input_fc_layer_params, lstm_size,
                                             output_fc_layer_params,
                                             num_actions)
        else:
            q_net = create_feedforward_network(fc_layer_params, num_actions)
            train_sequence_length = n_step_update
        q_net = GATNetwork(tf_env.observation_spec(), tf_env.action_spec(),
                           graph)
        #time_step = tf_env.reset()
        #q_net(time_step.observation, time_step.step_type)
        #q_net = actor_distribution_network.ActorDistributionNetwork(
        #	tf_env.observation_spec(),
        #	tf_env.action_spec(),
        #	fc_layer_params=fc_layer_params)

        #q_net = QNetwork(tf_env.observation_spec(), tf_env.action_spec(), 30)
        # TODO(b/127301657): Decay epsilon based on global step, cf. cl/188907839
        tf_agent = dqn_agent.DqnAgent(
            tf_env.time_step_spec(),
            tf_env.action_spec(),
            q_network=q_net,
            epsilon_greedy=epsilon_greedy,
            n_step_update=n_step_update,
            target_update_tau=target_update_tau,
            target_update_period=target_update_period,
            optimizer=tf.compat.v1.train.AdamOptimizer(
                learning_rate=learning_rate),
            td_errors_loss_fn=common.element_wise_squared_loss,
            gamma=gamma,
            reward_scale_factor=reward_scale_factor,
            gradient_clipping=gradient_clipping,
            debug_summaries=debug_summaries,
            summarize_grads_and_vars=summarize_grads_and_vars,
            train_step_counter=global_step)
        #critic_net = ddpg.critic_network.CriticNetwork(
        #(tf_env.observation_spec(), tf_env.action_spec()),
        #observation_fc_layer_params=None,
        #action_fc_layer_params=None,
        #joint_fc_layer_params=(64,64,),
        #kernel_initializer='glorot_uniform',
        #last_kernel_initializer='glorot_uniform')

        #tf_agent = DdpgAgent(tf_env.time_step_spec(),
        #			   tf_env.action_spec(),
        #			   actor_network=q_net,
        #			   critic_network=critic_net,
        #			   actor_optimizer=tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate),
        #			   critic_optimizer=tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate),
        #			   ou_stddev=0.0,
        #			   ou_damping=0.0)
        tf_agent.initialize()

        train_metrics = [
            tf_metrics.NumberOfEpisodes(),
            tf_metrics.EnvironmentSteps(),
            tf_metrics.AverageReturnMetric(),
            tf_metrics.AverageEpisodeLengthMetric(),
            tf_metrics.MaxReturnMetric(),
        ]

        eval_policy = tf_agent.policy
        collect_policy = tf_agent.collect_policy

        replay_buffer = tf_uniform_replay_buffer.TFUniformReplayBuffer(
            data_spec=tf_agent.collect_data_spec,
            batch_size=tf_env.batch_size,
            max_length=replay_buffer_capacity)

        collect_driver = dynamic_step_driver.DynamicStepDriver(
            tf_env,
            collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_steps=collect_steps_per_iteration)

        train_checkpointer = common.Checkpointer(
            ckpt_dir=train_dir,
            agent=tf_agent,
            global_step=global_step,
            metrics=metric_utils.MetricsGroup(train_metrics, 'train_metrics'))
        policy_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
            train_dir, 'policy'),
                                                  policy=eval_policy,
                                                  global_step=global_step)
        rb_checkpointer = common.Checkpointer(ckpt_dir=os.path.join(
            train_dir, 'replay_buffer'),
                                              max_to_keep=1,
                                              replay_buffer=replay_buffer)

        train_checkpointer.initialize_or_restore()
        rb_checkpointer.initialize_or_restore()

        if use_tf_functions:
            # To speed up collect use common.function.
            collect_driver.run = common.function(collect_driver.run)
            tf_agent.train = common.function(tf_agent.train)

        initial_collect_policy = random_tf_policy.RandomTFPolicy(
            tf_env.time_step_spec(), tf_env.action_spec())

        # Collect initial replay data.
        logging.info(
            'Initializing replay buffer by collecting experience for %d steps with '
            'a random policy.', initial_collect_steps)
        dynamic_step_driver.DynamicStepDriver(
            tf_env,
            initial_collect_policy,
            observers=[replay_buffer.add_batch] + train_metrics,
            num_steps=initial_collect_steps).run()

        results = metric_utils.eager_compute(
            eval_metrics,
            eval_tf_env,
            eval_policy,
            num_episodes=num_eval_episodes,
            train_step=global_step,
            summary_writer=eval_summary_writer,
            summary_prefix='Metrics',
        )
        if eval_metrics_callback is not None:
            eval_metrics_callback(results, global_step.numpy())
        metric_utils.log_metrics(eval_metrics)

        time_step = None
        policy_state = collect_policy.get_initial_state(tf_env.batch_size)

        timed_at_step = global_step.numpy()
        time_acc = 0

        # Dataset generates trajectories with shape [Bx2x...]
        dataset = replay_buffer.as_dataset(num_parallel_calls=3,
                                           sample_batch_size=batch_size,
                                           num_steps=train_sequence_length +
                                           1).prefetch(3)
        iterator = iter(dataset)

        def train_step():
            experience, _ = next(iterator)
            return tf_agent.train(experience)

        if use_tf_functions:
            train_step = common.function(train_step)

        for _ in range(num_iterations):
            start_time = time.time()
            time_step, policy_state = collect_driver.run(
                time_step=time_step,
                policy_state=policy_state,
            )
            for _ in range(train_steps_per_iteration):
                train_loss = train_step()
            time_acc += time.time() - start_time

            if global_step.numpy() % log_interval == 0:
                logging.info('step = %d, loss = %f', global_step.numpy(),
                             train_loss.loss)
                steps_per_sec = (global_step.numpy() -
                                 timed_at_step) / time_acc
                logging.info('%.3f steps/sec', steps_per_sec)
                tf.compat.v2.summary.scalar(name='global_steps_per_sec',
                                            data=steps_per_sec,
                                            step=global_step)
                timed_at_step = global_step.numpy()
                time_acc = 0

            for train_metric in train_metrics:
                train_metric.tf_summaries(train_step=global_step,
                                          step_metrics=train_metrics[:2])

            if global_step.numpy() % train_checkpoint_interval == 0:
                train_checkpointer.save(global_step=global_step.numpy())

            if global_step.numpy() % policy_checkpoint_interval == 0:
                policy_checkpointer.save(global_step=global_step.numpy())

            if global_step.numpy() % rb_checkpoint_interval == 0:
                rb_checkpointer.save(global_step=global_step.numpy())

            if global_step.numpy() % eval_interval == 0:
                results = metric_utils.eager_compute(
                    eval_metrics,
                    eval_tf_env,
                    eval_policy,
                    num_episodes=num_eval_episodes,
                    train_step=global_step,
                    summary_writer=eval_summary_writer,
                    summary_prefix='Metrics',
                )
                if eval_metrics_callback is not None:
                    eval_metrics_callback(results, global_step.numpy())
                metric_utils.log_metrics(eval_metrics)
        print(tf_env.envs[0]._gym_env.best_controllers)
        print(tf_env.envs[0]._gym_env.best_reward)
        tf_env.envs[0]._gym_env.reset()
        centroid_controllers, heuristic_distance = tf_env.envs[
            0]._gym_env.graphCentroidAction()
        # Convert heuristic controllers to actual
        print(centroid_controllers)
        # Assume all clusters same length
        #centroid_controllers.sort()
        #cluster_len = len(clusters[0])
        #for i in range(len(clusters)):
        #	centroid_controllers[i] -= i * cluster_len
        print(centroid_controllers)
        for cont in centroid_controllers:
            (_, reward_final, _, _) = tf_env.envs[0]._gym_env.step(cont)
        best_heuristic = reward_final
        print(tf_env.envs[0]._gym_env.controllers, reward_final)
        return train_loss