def __compute_AP(self, c_scores, c_tp, c_fp, c_num_gbboxes):
        aps_voc07 = {}
        aps_voc12 = {}
        for c in c_scores.keys():
            num_gbboxes = c_num_gbboxes[c]
            tp = c_tp[c]
            fp = c_fp[c]
            scores = c_scores[c]

            #reshape data
            num_gbboxes = math_ops.to_int64(num_gbboxes)
            scores = math_ops.to_float(scores)
            stype = tf.bool
            tp = tf.cast(tp, stype)
            fp = tf.cast(fp, stype)
            # Reshape TP and FP tensors and clean away 0 class values.(difficult bboxes)
            scores = tf.reshape(scores, [-1])
            tp = tf.reshape(tp, [-1])
            fp = tf.reshape(fp, [-1])

            # Remove TP and FP both false.
            mask = tf.logical_or(tp, fp)

            rm_threshold = 1e-4
            mask = tf.logical_and(mask, tf.greater(scores, rm_threshold))
            scores = tf.boolean_mask(scores, mask)
            tp = tf.boolean_mask(tp, mask)
            fp = tf.boolean_mask(fp, mask)

            num_gbboxes = tf.reduce_sum(num_gbboxes)
            num_detections = tf.size(scores, out_type=tf.int32)

            # Precison and recall values.
            prec, rec = tfe.precision_recall(num_gbboxes, num_detections, tp,
                                             fp, scores)

            v = tfe.average_precision_voc07(prec, rec)
            aps_voc07[c] = v

            # Average precision VOC12.
            v = tfe.average_precision_voc12(prec, rec)

            aps_voc12[c] = v
        return aps_voc07, aps_voc12
示例#2
0
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.INFO)
    with tf.Graph().as_default():
        tf_global_step = slim.get_or_create_global_step()

        # =================================================================== #
        # Dataset + SSD model + Pre-processing
        # =================================================================== #
        dataset = dataset_factory.get_dataset(FLAGS.dataset_name,
                                              FLAGS.dataset_split_name,
                                              FLAGS.dataset_dir)

        # get the ssd network and its anchors
        ssd_cls = ssd.SSDnet
        ssd_params = ssd_cls.default_params._replace(
            num_classes=FLAGS.num_classes)
        ssd_net = ssd_cls(ssd_params)
        image_size = ssd_net.params.img_shape

        # Evaluation shape and associated anchors: eval_image_size
        ssd_shape = ssd_net.params.img_shape
        ssd_anchors = ssd_net.anchors(ssd_shape)

        # Select the preprocessing function.
        preprocessing_name = FLAGS.preprocessing_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=False)

        tf_utils.print_configuration(FLAGS.__flags, ssd_params,
                                     dataset.data_sources, FLAGS.eval_dir)
        # =================================================================== #
        # Create a dataset provider and batches.
        # =================================================================== #
        with tf.device('/cpu:0'):
            with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
                provider = slim.dataset_data_provider.DatasetDataProvider(
                    dataset,
                    common_queue_capacity=2 * FLAGS.batch_size,
                    common_queue_min=FLAGS.batch_size,
                    shuffle=False)
            # Get for SSD network: image, labels, bboxes.
            [image, shape, glabels, gbboxes] = provider.get(
                ['image', 'shape', 'object/label', 'object/bbox'])
            if FLAGS.remove_difficult:
                [gdifficults] = provider.get(['object/difficult'])
            else:
                gdifficults = tf.zeros(tf.shape(glabels), dtype=tf.int64)

            # Pre-processing image, labels and bboxes.
            image, glabels, gbboxes, gbbox_img = \
                image_preprocessing_fn(image, glabels, gbboxes,
                                       out_shape=ssd_shape,
                                       data_format=DATA_FORMAT,
                                       resize=FLAGS.eval_resize,
                                       difficults=None)

            # Encode groundtruth labels and bboxes.
            gclasses, glocalisations, gscores = \
                ssd_net.bboxes_encode(glabels, gbboxes, ssd_anchors)
            batch_shape = [1] * 5 + [len(ssd_anchors)] * 3

            # Evaluation batch.
            r = tf.train.batch(tf_utils.reshape_list([
                image, glabels, gbboxes, gdifficults, gbbox_img, gclasses,
                glocalisations, gscores
            ]),
                               batch_size=FLAGS.batch_size,
                               num_threads=FLAGS.num_preprocessing_threads,
                               capacity=5 * FLAGS.batch_size,
                               dynamic_pad=True)
            (b_image, b_glabels, b_gbboxes, b_gdifficults, b_gbbox_img,
             b_gclasses, b_glocalisations,
             b_gscores) = tf_utils.reshape_list(r, batch_shape)

        # =================================================================== #
        # SSD Network + Ouputs decoding.
        # =================================================================== #
        dict_metrics = {}
        arg_scope = ssd_net.arg_scope(data_format=DATA_FORMAT)
        with slim.arg_scope(arg_scope):
            predictions, localisations, logits, end_points = \
                ssd_net.net(b_image, is_training=False)
        # Add losses functions.
        # pdb.set_trace()
        ssd_net.losses(logits, localisations, b_gclasses, b_glocalisations,
                       b_gscores)

        # Performing post-processing on CPU: loop-intensive, usually more efficient.
        with tf.device('/device:CPU:0'):
            # Detected objects from SSD output.
            localisations = ssd_net.bboxes_decode(localisations, ssd_anchors)
            rscores, rbboxes = \
                ssd_net.detected_bboxes(predictions, localisations,
                                        select_threshold=FLAGS.select_threshold,
                                        nms_threshold=FLAGS.nms_threshold,
                                        clipping_bbox=None,
                                        top_k=FLAGS.select_top_k,
                                        keep_top_k=FLAGS.keep_top_k)
            # Compute TP and FP statistics.
            num_gbboxes, tp, fp, rscores = \
                tfe.bboxes_matching_batch(rscores.keys(), rscores, rbboxes,
                                          b_glabels, b_gbboxes, b_gdifficults,
                                          matching_threshold=FLAGS.matching_threshold)

        # Variables to restore: moving avg. or normal weights.
        if FLAGS.moving_average_decay:
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, tf_global_step)
            variables_to_restore = variable_averages.variables_to_restore(
                slim.get_model_variables())
            variables_to_restore[tf_global_step.op.name] = tf_global_step
        else:
            variables_to_restore = slim.get_variables_to_restore()

        # =================================================================== #
        # Evaluation metrics.
        # =================================================================== #
        with tf.device('/device:CPU:0'):
            dict_metrics = {}
            # First add all losses.
            for loss in tf.get_collection(tf.GraphKeys.LOSSES):
                dict_metrics[loss.op.name] = slim.metrics.streaming_mean(loss)
            # Extra losses as well.
            for loss in tf.get_collection('EXTRA_LOSSES'):
                dict_metrics[loss.op.name] = slim.metrics.streaming_mean(loss)

            # Add metrics to summaries and Print on screen.
            for name, metric in dict_metrics.items():
                # summary_name = 'eval/%s' % name
                summary_name = name
                op = tf.summary.scalar(summary_name, metric[0], collections=[])
                # op = tf.Print(op, [metric[0]], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

            # FP and TP metrics.
            tp_fp_metric = tfe.streaming_tp_fp_arrays(num_gbboxes, tp, fp,
                                                      rscores)
            for c in tp_fp_metric[0].keys():
                dict_metrics['tp_fp_%s' % c] = (tp_fp_metric[0][c],
                                                tp_fp_metric[1][c])

            # Add to summaries precision/recall values.
            aps_voc07 = {}
            aps_voc12 = {}
            for c in tp_fp_metric[0].keys():
                # Precison and recall values.
                prec, rec = tfe.precision_recall(*tp_fp_metric[0][c])

                # Average precision VOC07.
                v = tfe.average_precision_voc07(prec, rec)
                summary_name = 'AP_VOC07/%s' % c
                op = tf.summary.scalar(summary_name, v, collections=[])
                # op = tf.Print(op, [v], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
                aps_voc07[c] = v

                # Average precision VOC12.
                v = tfe.average_precision_voc12(prec, rec)
                summary_name = 'AP_VOC12/%s' % c
                op = tf.summary.scalar(summary_name, v, collections=[])
                # op = tf.Print(op, [v], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
                aps_voc12[c] = v

            # Mean average precision VOC07.
            summary_name = 'AP_VOC07/mAP'
            mAP = tf.add_n(list(aps_voc07.values())) / len(aps_voc07)
            op = tf.summary.scalar(summary_name, mAP, collections=[])
            op = tf.Print(op, [mAP], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

            # Mean average precision VOC12.
            summary_name = 'AP_VOC12/mAP'
            mAP = tf.add_n(list(aps_voc12.values())) / len(aps_voc12)
            op = tf.summary.scalar(summary_name, mAP, collections=[])
            op = tf.Print(op, [mAP], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

        # for i, v in enumerate(l_precisions):
        #     summary_name = 'eval/precision_at_recall_%.2f' % LIST_RECALLS[i]
        #     op = tf.summary.scalar(summary_name, v, collections=[])
        #     op = tf.Print(op, [v], summary_name)
        #     tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

        # Split into values and updates ops.
        names_to_values, names_to_updates = slim.metrics.aggregate_metric_map(
            dict_metrics)

        # =================================================================== #
        # Evaluation loop.
        # =================================================================== #
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
        config = tf.ConfigProto(log_device_placement=False,
                                gpu_options=gpu_options)
        # config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1

        # Number of batches...
        if FLAGS.max_num_batches:
            num_batches = FLAGS.max_num_batches
        else:
            num_batches = math.ceil(dataset.num_samples /
                                    float(FLAGS.batch_size))

        if not FLAGS.wait_for_checkpoints:
            if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
                checkpoint_path = tf.train.latest_checkpoint(
                    FLAGS.checkpoint_path)

            else:
                checkpoint_path = os.path.join(os.getcwd(),
                                               FLAGS.checkpoint_path)
            tf.logging.info('Evaluating %s' % checkpoint_path)

            # Standard evaluation loop.
            start = time.time()
            # pdb.set_trace()
            slim.evaluation.evaluate_once(
                master=FLAGS.master,
                checkpoint_path=checkpoint_path,
                logdir=FLAGS.eval_dir,
                num_evals=num_batches,
                eval_op=flatten(list(names_to_updates.values())),
                variables_to_restore=variables_to_restore,
                session_config=config)
            # Log time spent.
            elapsed = time.time()
            elapsed = elapsed - start
            print('Time spent : %.3f seconds.' % elapsed)
            print('Time spent per BATCH: %.3f seconds.' %
                  (elapsed / num_batches))

        else:
            checkpoint_path = FLAGS.checkpoint_path
            tf.logging.info('Evaluating %s' % checkpoint_path)

            # Waiting loop.
            slim.evaluation.evaluation_loop(
                master=FLAGS.master,
                checkpoint_dir=checkpoint_path,
                logdir=FLAGS.eval_dir,
                num_evals=num_batches,
                eval_op=flatten(list(names_to_updates.values())),
                variables_to_restore=variables_to_restore,
                eval_interval_secs=60,
                max_number_of_evaluations=np.inf,
                session_config=config,
                timeout=None)
示例#3
0
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError('You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.INFO)
    with tf.Graph().as_default():
        tf_global_step = slim.get_or_create_global_step()
        dataset = dataset_factory.get_dataset(
            FLAGS.dataset_name, FLAGS.dataset_split_name, FLAGS.dataset_dir)

        # Get the RON network and its anchors.
        ron_class = nets_factory.get_network(FLAGS.model_name)
        ron_params = ron_class.default_params._replace(num_classes=FLAGS.num_classes)
        ron_net = ron_class(ron_params)
        ron_shape = ron_net.params.img_shape
        ron_anchors = ron_net.anchors(ron_shape)

        # Select the preprocessing function.
        preprocessing_name = FLAGS.preprocessing_name or FLAGS.model_name
        image_preprocessing_fn = preprocessing_factory.get_preprocessing(
            preprocessing_name, is_training=False)

        tf_utils.print_configuration(FLAGS.__flags, ron_params,
                                     dataset.data_sources, FLAGS.eval_dir)
        # =================================================================== #
        # Create a dataset provider and batches.
        # =================================================================== #
        with tf.device('/cpu:0'):
            with tf.name_scope(FLAGS.dataset_name + '_data_provider'):
                provider = slim.dataset_data_provider.DatasetDataProvider(
                    dataset,
                    common_queue_capacity=2 * FLAGS.batch_size,
                    common_queue_min=FLAGS.batch_size,
                    shuffle=False)
            # Get for SSD network: image, labels, bboxes.
            [image_, shape, glabels, gbboxes, gdifficults] = provider.get(['image', 'shape',
                                                         'object/label',
                                                         'object/bbox',
                                                         'object/difficult'])

            # Pre-processing image, labels and bboxes.
            image, glabels, gbboxes, gbbox_img = \
                image_preprocessing_fn(image_, glabels, gbboxes,
                                       out_shape=ron_shape,
                                       data_format=DATA_FORMAT,
                                       difficults=None)

            # Encode groundtruth labels and bboxes.
            gclasses, glocalisations, gscores, _ = \
                ron_net.bboxes_encode(glabels, gbboxes, ron_anchors)
            batch_shape = [1] * 5 + [len(ron_anchors)] * 3

            # Evaluation batch.
            r = tf.train.batch(
                tf_utils.reshape_list([image, glabels, gbboxes, gdifficults, gbbox_img,
                                       gclasses, glocalisations, gscores]),
                batch_size=FLAGS.batch_size,
                num_threads=FLAGS.num_preprocessing_threads,
                capacity=5 * FLAGS.batch_size,
                dynamic_pad=True)
            (b_image, b_glabels, b_gbboxes, b_gdifficults, b_gbbox_img, b_gclasses,
             b_glocalisations, b_gscores) = tf_utils.reshape_list(r, batch_shape)

        # =================================================================== #
        # SSD Network + Ouputs decoding.
        # =================================================================== #
        dict_metrics = {}
        arg_scope = ron_net.arg_scope(weight_decay=FLAGS.weight_decay,
                                        is_training=False,
                                        data_format=DATA_FORMAT)

        with slim.arg_scope(arg_scope):
            predictions, logits, objness_pred, objness_logits, localisations, end_points = \
                ron_net.net(b_image, is_training=False)
        # Add loss function.
        ron_net.losses(logits, localisations, objness_logits, objness_pred,
                       b_gclasses, b_glocalisations, b_gscores,
                       match_threshold = FLAGS.match_threshold,
                       neg_threshold = FLAGS.neg_threshold,
                       objness_threshold = FLAGS.objectness_thres,
                       negative_ratio=FLAGS.negative_ratio,
                       alpha=FLAGS.loss_alpha,
                       beta=FLAGS.loss_beta,
                       label_smoothing=FLAGS.label_smoothing)

        variables_to_restore = slim.get_variables_to_restore()
        # Performing post-processing on CPU: loop-intensive, usually more efficient.
        with tf.device('/device:CPU:0'):
            # Detected objects from SSD output.
            localisations = ron_net.bboxes_decode(localisations, ron_anchors)
            filtered_predictions = []
            for i, objness in enumerate(objness_pred):
                filtered_predictions.append(tf.cast(tf.greater(objness, FLAGS.objectness_thres), tf.float32) * predictions[i])
            rscores, rbboxes = \
                ron_net.detected_bboxes(filtered_predictions, localisations,
                                        select_threshold=FLAGS.select_threshold,
                                        nms_threshold=FLAGS.nms_threshold,
                                        clipping_bbox=[0., 0., 1., 1.],
                                        top_k=FLAGS.select_top_k,
                                        keep_top_k=FLAGS.keep_top_k)
            labels_list = []
            for k, v in rscores.items():
                labels_list.append(tf.ones_like(v, tf.int32) * k)
            save_image_op = tf.py_func(save_image_with_bbox,
                                        [tf.cast(tf.squeeze(b_image, 0), tf.float32),
                                        tf.squeeze(tf.concat(labels_list, axis=1), 0),
                                        #tf.convert_to_tensor(list(rscores.keys()), dtype=tf.int64),
                                        tf.squeeze(tf.concat(list(rscores.values()), axis=1), 0),
                                        tf.squeeze(tf.concat(list(rbboxes.values()), axis=1), 0)],
                                        tf.int64, stateful=True)
            with tf.control_dependencies([save_image_op]):
                # Compute TP and FP statistics.
                num_gbboxes, tp, fp, rscores = \
                    tfe.bboxes_matching_batch(rscores.keys(), rscores, rbboxes,
                                              b_glabels, b_gbboxes, b_gdifficults,
                                              matching_threshold=0.5)



        # =================================================================== #
        # Evaluation metrics.
        # =================================================================== #
        with tf.device('/device:CPU:0'):
            dict_metrics = {}
            # First add all losses.
            for loss in tf.get_collection(tf.GraphKeys.LOSSES):
                dict_metrics[loss.op.name] = slim.metrics.streaming_mean(loss)
            # Extra losses as well.
            for loss in tf.get_collection('EXTRA_LOSSES'):
                dict_metrics[loss.op.name] = slim.metrics.streaming_mean(loss)

            # Add metrics to summaries and Print on screen.
            for name, metric in dict_metrics.items():
                # summary_name = 'eval/%s' % name
                summary_name = name
                op = tf.summary.scalar(summary_name, metric[0], collections=[])
                # op = tf.Print(op, [metric[0]], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

            # FP and TP metrics.
            tp_fp_metric = tfe.streaming_tp_fp_arrays(num_gbboxes, tp, fp, rscores)

            metrics_name = ('nobjects', 'ndetections', 'tp', 'fp', 'scores')
            for c in tp_fp_metric[0].keys():
                for _ in range(len(tp_fp_metric[0][c])):
                    dict_metrics['tp_fp_%s_%s' % (c, metrics_name[_])] = (tp_fp_metric[0][c][_],
                                                    tp_fp_metric[1][c][_])

            # for c in tp_fp_metric[0].keys():
            #     dict_metrics['tp_fp_%s' % c] = (tp_fp_metric[0][c],
            #                                     tp_fp_metric[1][c])

            # Add to summaries precision/recall values.
            aps_voc07 = {}
            aps_voc12 = {}
            for c in tp_fp_metric[0].keys():
                # Precison and recall values.
                prec, rec = tfe.precision_recall(*tp_fp_metric[0][c])

                # Average precision VOC07.
                v = tfe.average_precision_voc07(prec, rec)
                summary_name = 'AP_VOC07/%s' % c
                op = tf.summary.scalar(summary_name, v, collections=[])
                # op = tf.Print(op, [v], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
                aps_voc07[c] = v

                # Average precision VOC12.
                v = tfe.average_precision_voc12(prec, rec)
                summary_name = 'AP_VOC12/%s' % c
                op = tf.summary.scalar(summary_name, v, collections=[])
                # op = tf.Print(op, [v], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
                aps_voc12[c] = v

            # Mean average precision VOC07.
            summary_name = 'AP_VOC07/mAP'
            mAP = tf.add_n(list(aps_voc07.values())) / len(aps_voc07)
            op = tf.summary.scalar(summary_name, mAP, collections=[])
            op = tf.Print(op, [mAP], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

            # Mean average precision VOC12.
            summary_name = 'AP_VOC12/mAP'
            mAP = tf.add_n(list(aps_voc12.values())) / len(aps_voc12)
            op = tf.summary.scalar(summary_name, mAP, collections=[])
            op = tf.Print(op, [mAP], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

        # for i, v in enumerate(l_precisions):
        #     summary_name = 'eval/precision_at_recall_%.2f' % LIST_RECALLS[i]
        #     op = tf.summary.scalar(summary_name, v, collections=[])
        #     op = tf.Print(op, [v], summary_name)
        #     tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)


        # Split into values and updates ops.
        names_to_values, names_to_updates = slim.metrics.aggregate_metric_map(dict_metrics)

        # =================================================================== #
        # Evaluation loop.
        # =================================================================== #
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
        config = tf.ConfigProto(log_device_placement=False, gpu_options=gpu_options)
        # config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1

        # Number of batches...
        num_batches = math.ceil(dataset.num_samples / float(FLAGS.batch_size))

        if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
                checkpoint_path = tf.train.latest_checkpoint(FLAGS.checkpoint_path)
        else:
            checkpoint_path = FLAGS.checkpoint_path
        tf.logging.info('Evaluating %s' % checkpoint_path)

        # Standard evaluation loop.
        start = time.time()
        slim.evaluation.evaluate_once(
            master=FLAGS.master,
            checkpoint_path=checkpoint_path,
            logdir=FLAGS.eval_dir,
            num_evals=num_batches,
            eval_op=list(names_to_updates.values()),
            variables_to_restore=variables_to_restore,
            session_config=config)
        # Log time spent.
        elapsed = time.time()
        elapsed = elapsed - start
        print('Time spent : %.3f seconds.' % elapsed)
        print('Time spent per BATCH: %.3f seconds.' % (elapsed / num_batches))
示例#4
0
def main(_):
    if not FLAGS.dataset_dir:
        raise ValueError(
            'You must supply the dataset directory with --dataset_dir')

    tf.logging.set_verbosity(tf.logging.INFO)
    with tf.Graph().as_default():
        tf_global_step = slim.get_or_create_global_step()

        # initalize the net
        network_fn = nets_factory.get_network(FLAGS.model_name)
        net = network_fn()
        out_shape = net.params.img_shape
        out_shape = (300, 300)
        anchors = net.anchors(out_shape)
        # =================================================================== #
        # Create a dataset provider and batches.
        # =================================================================== #
        with tf.device('/cpu:0'):
            b_image, glabels, b_gbboxes, g_bbox_img, b_glocalisations, b_gscores =\
                load_batch.get_batch(FLAGS.dataset_dir,
                    FLAGS.num_readers,
                    FLAGS.batch_size,
                    out_shape,
                    net,
                    anchors,
                    FLAGS,
                    file_pattern =  '*.tfrecord',
                    is_training = False,
                    shuffe = FLAGS.shuffle_data)
        b_gdifficults = tf.zeros(tf.shape(glabels), dtype=tf.int64)
        dict_metrics = {}
        arg_scope = net.arg_scope(data_format=DATA_FORMAT)
        with slim.arg_scope(arg_scope):
            localisations, logits, end_points  = \
             net.net(b_image, is_training=False, use_batch=FLAGS.use_batch)
        # Add losses functions.
        #total_loss = net.losses(logits, localisations,
        #					  b_glocalisations, b_gscores)
        predictions = []
        for i in range(len(logits)):
            predictions.append(slim.softmax(logits[i]))

        # Performing post-processing on CPU: loop-intensive, usually more efficient.
        with tf.device('/device:CPU:0'):
            # Detected objects from SSD output.
            localisations = net.bboxes_decode(localisations, anchors)
            rscores, rbboxes = \
             net.detected_bboxes(predictions, localisations,
                   select_threshold=FLAGS.select_threshold,
                   nms_threshold=FLAGS.nms_threshold,
                   clipping_bbox=None,
                   top_k=FLAGS.select_top_k,
                   keep_top_k=FLAGS.keep_top_k)
            # Compute TP and FP statistics.
            num_gbboxes, tp, fp, rscores = \
             tfe.bboxes_matching_batch(rscores.keys(), rscores, rbboxes,
                     glabels, b_gbboxes, b_gdifficults,
                     matching_threshold=FLAGS.matching_threshold)

        # Variables to restore: moving avg. or normal weights.
        if FLAGS.moving_average_decay:
            variable_averages = tf.train.ExponentialMovingAverage(
                FLAGS.moving_average_decay, tf_global_step)
            variables_to_restore = variable_averages.variables_to_restore(
                slim.get_model_variables())
            variables_to_restore[tf_global_step.op.name] = tf_global_step
        else:
            variables_to_restore = slim.get_variables_to_restore()

        # =================================================================== #
        # Evaluation metrics.
        # =================================================================== #
        with tf.device(FLAGS.gpu_eval):
            dict_metrics = {}
            # Extra losses as well.
            for loss in tf.get_collection('EXTRA_LOSSES'):
                dict_metrics[loss.op.name] = slim.metrics.streaming_mean(loss)

            # Add metrics to summaries and Print on screen.
            for name, metric in dict_metrics.items():
                # summary_name = 'eval/%s' % name
                summary_name = name
                op = tf.summary.scalar(summary_name, metric[0], collections=[])
                # op = tf.Print(op, [metric[0]], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

            # FP and TP metrics.
            tp_fp_metric = tfe.streaming_tp_fp_arrays(num_gbboxes, tp, fp,
                                                      rscores)
            for c in tp_fp_metric[0].keys():
                dict_metrics['tp_fp_%s' % c] = (tp_fp_metric[0][c],
                                                tp_fp_metric[1][c])

            # Add to summaries precision/recall values.
            icdar2013 = {}
            for c in tp_fp_metric[0].keys():
                # Precison and recall values.
                prec, rec = tfe.precision_recall(*tp_fp_metric[0][c])

                op = tf.summary.scalar('precision',
                                       tf.reduce_mean(prec),
                                       collections=[])
                # op = tf.Print(op, [v], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

                op = tf.summary.scalar('recall',
                                       tf.reduce_mean(rec),
                                       collections=[])
                # op = tf.Print(op, [v], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

                # Average precision VOC07.
                v = tfe.average_precision_voc12(prec, rec)
                #v = (prec + rec)/2.
                summary_name = 'ICDAR13/%s' % c
                op = tf.summary.scalar(summary_name, v, collections=[])
                # op = tf.Print(op, [v], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
                icdar2013[c] = v

            # Mean average precision VOC07.
            summary_name = 'ICDAR13/mAP'
            mAP = tf.add_n(list(icdar2013.values())) / len(icdar2013)
            op = tf.summary.scalar(summary_name, mAP, collections=[])
            op = tf.Print(op, [mAP], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

        # Split into values and updates ops.
        names_to_values, names_to_updates = slim.metrics.aggregate_metric_map(
            dict_metrics)

        # =================================================================== #
        # Evaluation loop.
        # =================================================================== #
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
        config = tf.ConfigProto(log_device_placement=False,
                                gpu_options=gpu_options)
        # config.graph_options.optimizer_options.global_jit_level = tf.OptimizerOptions.ON_1

        # Number of batches...
        if FLAGS.max_num_batches:
            num_batches = FLAGS.max_num_batches
        else:
            num_batches = math.ceil(FLAGS.num_samples /
                                    float(FLAGS.batch_size))

        if not FLAGS.wait_for_checkpoints:
            if tf.gfile.IsDirectory(FLAGS.checkpoint_path):
                checkpoint_path = tf.train.latest_checkpoint(
                    FLAGS.checkpoint_path)
            else:
                checkpoint_path = FLAGS.checkpoint_path
            tf.logging.info('Evaluating %s' % checkpoint_path)

            # Standard evaluation loop.
            start = time.time()
            slim.evaluation.evaluate_once(
                master=FLAGS.master,
                checkpoint_path=checkpoint_path,
                logdir=FLAGS.eval_dir,
                num_evals=num_batches,
                eval_op=list(names_to_updates.values()),
                variables_to_restore=variables_to_restore,
                session_config=config)
            # Log time spent.
            elapsed = time.time()
            elapsed = elapsed - start
            print('Time spent : %.3f seconds.' % elapsed)
            print('Time spent per BATCH: %.3f seconds.' %
                  (elapsed / num_batches))

        else:
            checkpoint_path = FLAGS.checkpoint_path
            tf.logging.info('Evaluating %s' % checkpoint_path)

            # Waiting loop.
            slim.evaluation.evaluation_loop(
                master=FLAGS.master,
                checkpoint_dir=checkpoint_path,
                logdir=FLAGS.eval_dir,
                num_evals=num_batches,
                eval_op=list(names_to_updates.values()),
                variables_to_restore=variables_to_restore,
                eval_interval_secs=60,
                max_number_of_evaluations=np.inf,
                session_config=config,
                timeout=None)
    def get_mAP_tf_accumulative(self, predictions, localisations, glabels,
                                gbboxes, gdifficults):
        # Performing post-processing on CPU: loop-intensive, usually more efficient.
        with tf.device('/device:CPU:0'):

            # Detected objects from SSD output.
            localisations = g_ssd_model.decode_bboxes_all_ayers_tf(
                localisations)

            rscores, rbboxes = g_ssd_model.detected_bboxes(
                predictions, localisations)

            # Compute TP and FP statistics.
            num_gbboxes, tp, fp, rscores = \
                tfe.bboxes_matching_batch(rscores.keys(), rscores, rbboxes,
                                          glabels, gbboxes, gdifficults)
        dict_metrics = {}
        with tf.device('/device:CPU:0'):

            # FP and TP metrics.
            tp_fp_metric = tfe.streaming_tp_fp_arrays(num_gbboxes, tp, fp,
                                                      rscores)
            for c in tp_fp_metric[0].keys():
                dict_metrics['tp_fp_%s' % c] = (tp_fp_metric[0][c],
                                                tp_fp_metric[1][c])

            # Add to summaries precision/recall values.
            aps_voc07 = {}
            aps_voc12 = {}
            for c in tp_fp_metric[0].keys():
                # Precison and recall values.
                prec, rec = tfe.precision_recall(*tp_fp_metric[0][c])

                # Average precision VOC07.
                v = tfe.average_precision_voc07(prec, rec)
                summary_name = 'AP_VOC07/%s' % c
                op = tf.summary.scalar(summary_name, v, collections=[])
                # op = tf.Print(op, [v], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
                aps_voc07[c] = v

                # Average precision VOC12.
                v = tfe.average_precision_voc12(prec, rec)
                summary_name = 'AP_VOC12/%s' % c
                op = tf.summary.scalar(summary_name, v, collections=[])
                # op = tf.Print(op, [v], summary_name)
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
                aps_voc12[c] = v

            # Mean average precision VOC07.
            summary_name = 'AP_VOC07/mAP_accumulative'
            mAP = tf.add_n(list(aps_voc07.values())) / len(aps_voc07)
            op = tf.summary.scalar(summary_name, mAP, collections=[])
            op = tf.Print(op, [mAP], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

            # Mean average precision VOC12.
            summary_name = 'AP_VOC12/mAP_accumulative'
            mAP = tf.add_n(list(aps_voc12.values())) / len(aps_voc12)
            op = tf.summary.scalar(summary_name, mAP, collections=[])
            op = tf.Print(op, [mAP], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

            # Split into values and updates ops.
            names_to_values, names_to_updates = slim.metrics.aggregate_metric_map(
                dict_metrics)
        return names_to_updates
示例#6
0
def ssd_eval(dataset_name, dataset_dir, batch_size, eval_dir):
    
    tf.logging.set_verbosity(tf.logging.INFO)

    with tf.Graph().as_default():

        tf_global_step = slim.get_or_create_global_step()
        
        # Dataset + SSD Model + Pre-processing
        dataset = dataset_factory.get_dataset(dataset_name, 'test', dataset_dir)
        
        ssd_net = ssd_vgg_300.SSDNet()
        ssd_shape = net_shape
        ssd_anchors = ssd_net.anchors(ssd_shape)

        # Create a dataset provider and batches
        with tf.device('/cpu:0'):
            with tf.name_scope(dataset_name + '_data_provider'):
                provider = slim.dataset_data_provider.DatasetDataProvider(
                    dataset,
                    common_queue_capacity = 2 * batch_size,
                    common_queue_min = batch_size,
                    shuffle = False
                )

            [image, shape, glabels, gbboxes] = provider.get(['image', 'shape','object/label', 'object/bbox'])
            [gdifficults] = provider.get(['object/difficult'])

            image, glabels, gbboxes, gbbox_img = ssd_vgg_preprocessing.preprocess_for_eval(image, glabels, gbboxes, ssd_shape,
                                                                    data_format = data_format, 
                                                                    resize = ssd_vgg_preprocessing.Resize.WARP_RESIZE)

            gclasses, glocalizations, gscores = ssd_net.bboxes_encode(glabels, gbboxes, ssd_anchors)
            batch_shape = [1] * 5 + [len(ssd_anchors)] * 3

            # Evaluation Batch
            r = tf.train.batch(reshape_list([image, glabels, gbboxes, gdifficults, gbbox_img, gclasses, glocalizations, gscores]),
                                batch_size = batch_size, 
                                num_threads = 1,
                                capacity = 5 * batch_size, 
                                dynamic_pad = True)
            (b_image, b_glabels, b_gbboxes, b_gdifficults, b_gbbox_img, b_gclasses, b_glocalizations,
                b_gscores) = reshape_list(r, batch_shape)

        # SSD network + output decoding
        arg_scope = ssd_net.arg_scope(data_format= data_format)
        with slim.arg_scope(arg_scope):
            predictions, localizations, logits, _ = ssd_net.net(b_image, is_training=False)
            
        ssd_net.losses(logits, localizations, b_gclasses, b_glocalizations, b_gscores)

        with tf.device('/device:CPU:0'):
            localizations = ssd_net.bboxes_decode(localizations, ssd_anchors)
            rscores, rbboxes = ssd_net.detected_bboxes(predictions, localizations,
                                                        select_threshold=0.01,
                                                        nms_threshold=0.45,
                                                        clipping_bbox=None,
                                                        top_k=400,
                                                        keep_top_k=200)
            
            num_gbboxes, tp, fp, rscores = tfe.bboxes_matching_batch(rscores.keys(), rscores, rbboxes,
                                                                    b_glabels, b_gbboxes, b_gdifficults, 
                                                                    matching_threshold= 0.5)
            
        variables_to_restore = slim.get_variables_to_restore()

   
        with tf.device('/device:CPU:0'):

            dict_metrics = {}
            
            for loss in tf.get_collection(tf.GraphKeys.LOSSES):
                dict_metrics[loss.op.name] = slim.metrics.streaming_mean(loss)

            for loss in tf.get_collection('EXTRA_LOSSES'):
                dict_metrics[loss.op.name] = slim.metrics.streaming_mean(loss)
            
            for name, metric in dict_metrics.items():
                summary_name = name
                op = tf.summary.scalar(summary_name, metric[0], collections=[])
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
            
            tp_fp_metric = tfe.streaming_tp_fp_arrays(num_gbboxes, tp, fp, rscores)
            for c in tp_fp_metric[0].keys():
                dict_metrics['tp_fp_%s' % c] = (tp_fp_metric[0][c], tp_fp_metric[1][c])

            aps_VOC07 = {}
            aps_voc12 = {}
            
            for c in tp_fp_metric[0].keys():
                # precision and recall values
                pre, rec = tfe.precision_recall(*tp_fp_metric[0][c])
                
                # average precision VOC07
                v = tfe.average_precision_voc07(pre,rec)
                summary_name = 'AP_VOC07/%s' % c
                op = tf.summary.scalar(summary_name, v, collections=[])
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
                aps_VOC07[c] = v

                # Average precision VOC12.
                v = tfe.average_precision_voc12(pre, rec)
                summary_name = 'AP_VOC12/%s' % c
                op = tf.summary.scalar(summary_name, v, collections=[])
                tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)
                aps_voc12[c] = v
            
            # Mean average Precision VOC07
            summary_name = 'AP_VOC07/mAP'
            mAP = tf.add_n(list(aps_VOC07.values()))/len(aps_VOC07)
            op = tf.summary.scalar(summary_name, mAP, collections=[])
            op = tf.Print(op, [mAP], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)

            # Mean average precision VOC12.
            summary_name = 'AP_VOC12/mAP'
            mAP = tf.add_n(list(aps_voc12.values())) / len(aps_voc12)
            op = tf.summary.scalar(summary_name, mAP, collections=[])
            op = tf.Print(op, [mAP], summary_name)
            tf.add_to_collection(tf.GraphKeys.SUMMARIES, op)


        names_to_values, names_to_updates = slim.metrics.aggregate_metric_map(dict_metrics)

        # Evaluation Loop

        gpu_options = tf.GPUOptions(allow_growth=True, per_process_gpu_memory_fraction=0.9)
        config = tf.ConfigProto(log_device_placement=False, gpu_options=gpu_options)


        num_batches = math.ceil(dataset.num_samples / float(batch_size))
        tf.logging.info('Evaluating %s' % ckpt_filename)
        start = time.time()
        slim.evaluation.evaluate_once(master= '', 
                                      checkpoint_path = ckpt_filename,
                                      logdir= eval_dir, 
                                      num_evals= num_batches,
                                      eval_op= flatten(list(names_to_updates.values())),
                                      variables_to_restore= variables_to_restore,
                                      session_config = config)
        # log time spent
        elapsed = time.time() - start
        print('Time Spent: %.3f' % elapsed)
        print('Time Spent per batch: %.3f seconds' % (elapsed/num_batches))