def __init__(self, name, input_shape, output_dim, hidden_dim, hidden_nonlinearity=tf.nn.relu, gru_layer_cls=L.GRULayer, output_nonlinearity=None, input_var=None, input_layer=None, layer_args=None): with tf.variable_scope(name): if input_layer is None: l_in = L.InputLayer( shape=(None, None) + input_shape, input_var=input_var, name="input") else: l_in = input_layer l_step_input = L.InputLayer( shape=(None,) + input_shape, name="step_input") l_step_prev_state = L.InputLayer( shape=(None, hidden_dim), name="step_prev_state") if layer_args is None: layer_args = dict() l_gru = gru_layer_cls(l_in, num_units=hidden_dim, hidden_nonlinearity=hidden_nonlinearity, hidden_init_trainable=False, name="gru", **layer_args) l_gru_flat = L.ReshapeLayer( l_gru, shape=(-1, hidden_dim), name="gru_flat" ) l_output_flat = L.DenseLayer( l_gru_flat, num_units=output_dim, nonlinearity=output_nonlinearity, name="output_flat" ) l_output = L.OpLayer( l_output_flat, op=lambda flat_output, l_input: tf.reshape(flat_output, tf.pack( (tf.shape(l_input)[0], tf.shape(l_input)[1], -1))), shape_op=lambda flat_output_shape, l_input_shape: (l_input_shape[0], l_input_shape[1], flat_output_shape[-1]), extras=[l_in], name="output" ) l_step_state = l_gru.get_step_layer( l_step_input, l_step_prev_state, name="step_state") l_step_hidden = l_step_state l_step_output = L.DenseLayer( l_step_hidden, num_units=output_dim, nonlinearity=output_nonlinearity, W=l_output_flat.W, b=l_output_flat.b, name="step_output" ) self._l_in = l_in self._hid_init_param = l_gru.h0 self._l_gru = l_gru self._l_out = l_output self._l_step_input = l_step_input self._l_step_prev_state = l_step_prev_state self._l_step_hidden = l_step_hidden self._l_step_state = l_step_state self._l_step_output = l_step_output self._hidden_dim = hidden_dim
def __init__(self, name, output_dim, hidden_sizes, hidden_nonlinearity, output_nonlinearity, hidden_W_init=L.XavierUniformInitializer(), hidden_b_init=tf.zeros_initializer, output_W_init=L.XavierUniformInitializer(), output_b_init=tf.zeros_initializer, batch_size=None, input_var=None, input_layer=None, input_shape=None, batch_normalization=False, weight_normalization=False, ): Serializable.quick_init(self, locals()) self.name = name with tf.variable_scope(name): if input_layer is None: l_in = L.InputLayer( shape=(batch_size,) + input_shape, input_var=input_var, name="input") else: l_in = input_layer self._layers = [l_in] l_hid = l_in if batch_normalization: ls = L.batch_norm(l_hid) l_hid = ls[-1] self._layers += ls for idx, hidden_size in enumerate(hidden_sizes): l_hid = L.DenseLayer( l_hid, num_units=hidden_size, nonlinearity=hidden_nonlinearity, name="hidden_%d" % idx, W=hidden_W_init, b=hidden_b_init, weight_normalization=weight_normalization ) if batch_normalization: ls = L.batch_norm(l_hid) l_hid = ls[-1] self._layers += ls self._layers.append(l_hid) l_out = L.DenseLayer( l_hid, num_units=output_dim, nonlinearity=output_nonlinearity, name="output", W=output_W_init, b=output_b_init, weight_normalization=weight_normalization ) if batch_normalization: ls = L.batch_norm(l_out) l_out = ls[-1] self._layers += ls self._layers.append(l_out) self._l_in = l_in self._l_out = l_out self._l_tar = L.InputLayer( shape=(batch_size,) + (output_dim,), input_var=input_var, name="target") # self._input_var = l_in.input_var self._output = L.get_output(l_out) LayersPowered.__init__(self, l_out)
def feedforward(l_hid, hidden_sizes, hidden_nonlinearity, weight_normalization=False, hidden_W_init=L.XavierUniformInitializer(), hidden_b_init=tf.zeros_initializer, linear_output=False, start_idx=0): for idx, hidden_size in enumerate(hidden_sizes): if linear_output and (idx == (len(hidden_sizes) - 1)): nonlin = None else: nonlin = hidden_nonlinearity l_hid = L.DenseLayer(l_hid, num_units=hidden_size, nonlinearity=hidden_nonlinearity, name="hidden_%d" % (idx + start_idx), W=hidden_W_init, b=hidden_b_init, weight_normalization=weight_normalization) return l_hid
def __init__(self, name, input_shape, output_dim, hidden_dim, hidden_nonlinearity=tf.nn.relu, lstm_layer_cls=L.LSTMLayer, output_nonlinearity=None, input_var=None, input_layer=None, forget_bias=1.0, use_peepholes=False, layer_args=None): with tf.variable_scope(name): if input_layer is None: l_in = L.InputLayer(shape=(None, None) + input_shape, input_var=input_var, name="input") else: l_in = input_layer l_step_input = L.InputLayer(shape=(None, ) + input_shape, name="step_input") # contains previous hidden and cell state l_step_prev_state = L.InputLayer(shape=(None, hidden_dim * 2), name="step_prev_state") if layer_args is None: layer_args = dict() l_lstm = lstm_layer_cls(l_in, num_units=hidden_dim, hidden_nonlinearity=hidden_nonlinearity, hidden_init_trainable=False, name="lstm", forget_bias=forget_bias, cell_init_trainable=False, use_peepholes=use_peepholes, **layer_args) l_lstm_flat = L.ReshapeLayer(l_lstm, shape=(-1, hidden_dim), name="lstm_flat") l_output_flat = L.DenseLayer(l_lstm_flat, num_units=output_dim, nonlinearity=output_nonlinearity, name="output_flat") l_output = L.OpLayer( l_output_flat, op=lambda flat_output, l_input: tf.reshape( flat_output, tf.stack( (tf.shape(l_input)[0], tf.shape(l_input)[1], -1))), shape_op=lambda flat_output_shape, l_input_shape: (l_input_shape[0], l_input_shape[1], flat_output_shape[-1]), extras=[l_in], name="output") l_step_state = l_lstm.get_step_layer(l_step_input, l_step_prev_state, name="step_state") l_step_hidden = L.SliceLayer(l_step_state, indices=slice(hidden_dim), name="step_hidden") l_step_cell = L.SliceLayer(l_step_state, indices=slice(hidden_dim, None), name="step_cell") l_step_output = L.DenseLayer(l_step_hidden, num_units=output_dim, nonlinearity=output_nonlinearity, W=l_output_flat.W, b=l_output_flat.b, name="step_output") self._l_in = l_in self._hid_init_param = l_lstm.h0 self._cell_init_param = l_lstm.c0 self._l_lstm = l_lstm self._l_out = l_output self._l_step_input = l_step_input self._l_step_prev_state = l_step_prev_state self._l_step_hidden = l_step_hidden self._l_step_cell = l_step_cell self._l_step_state = l_step_state self._l_step_output = l_step_output self._hidden_dim = hidden_dim
def __init__(self, name, input_shape, output_dim, conv_filters, conv_filter_sizes, conv_strides, conv_pads, hidden_sizes, hidden_nonlinearity, output_nonlinearity, hidden_W_init=L.XavierUniformInitializer(), hidden_b_init=tf.zeros_initializer, output_W_init=L.XavierUniformInitializer(), output_b_init=tf.zeros_initializer, input_var=None, input_layer=None, batch_normalization=False, weight_normalization=False): Serializable.quick_init(self, locals()) """ A network composed of several convolution layers followed by some fc layers. input_shape: (width,height,channel) HOWEVER, network inputs are assumed flattened. This network will first unflatten the inputs and then apply the standard convolutions and so on. conv_filters: a list of numbers of convolution kernel conv_filter_sizes: a list of sizes (int) of the convolution kernels conv_strides: a list of strides (int) of the conv kernels conv_pads: a list of pad formats (either 'SAME' or 'VALID') hidden_nonlinearity: a nonlinearity from tf.nn, shared by all conv and fc layers hidden_sizes: a list of numbers of hidden units for all fc layers """ with tf.variable_scope(name): if input_layer is not None: l_in = input_layer l_hid = l_in elif len(input_shape) == 3: l_in = L.InputLayer(shape=(None, np.prod(input_shape)), input_var=input_var, name="input") l_hid = L.reshape(l_in, ([0], ) + input_shape, name="reshape_input") elif len(input_shape) == 2: l_in = L.InputLayer(shape=(None, np.prod(input_shape)), input_var=input_var, name="input") input_shape = (1, ) + input_shape l_hid = L.reshape(l_in, ([0], ) + input_shape, name="reshape_input") else: l_in = L.InputLayer(shape=(None, ) + input_shape, input_var=input_var, name="input") l_hid = l_in if batch_normalization: l_hid = L.batch_norm(l_hid) for idx, conv_filter, filter_size, stride, pad in zip( range(len(conv_filters)), conv_filters, conv_filter_sizes, conv_strides, conv_pads, ): l_hid = L.Conv2DLayer( l_hid, num_filters=conv_filter, filter_size=filter_size, stride=(stride, stride), pad=pad, nonlinearity=hidden_nonlinearity, name="conv_hidden_%d" % idx, weight_normalization=weight_normalization, ) if batch_normalization: l_hid = L.batch_norm(l_hid) if output_nonlinearity == L.spatial_expected_softmax: assert len(hidden_sizes) == 0 assert output_dim == conv_filters[-1] * 2 l_hid.nonlinearity = tf.identity l_out = L.SpatialExpectedSoftmaxLayer(l_hid) else: l_hid = L.flatten(l_hid, name="conv_flatten") for idx, hidden_size in enumerate(hidden_sizes): l_hid = L.DenseLayer( l_hid, num_units=hidden_size, nonlinearity=hidden_nonlinearity, name="hidden_%d" % idx, W=hidden_W_init, b=hidden_b_init, weight_normalization=weight_normalization, ) if batch_normalization: l_hid = L.batch_norm(l_hid) l_out = L.DenseLayer( l_hid, num_units=output_dim, nonlinearity=output_nonlinearity, name="output", W=output_W_init, b=output_b_init, weight_normalization=weight_normalization, ) if batch_normalization: l_out = L.batch_norm(l_out) self._l_in = l_in self._l_out = l_out # self._input_var = l_in.input_var LayersPowered.__init__(self, l_out)
def __init__(self, name, input_shape, output_dim, z_dim, pre_hidden_sizes, post_hidden_sizes, hidden_nonlinearity, output_nonlinearity, hidden_W_init=L.XavierUniformInitializer(), hidden_b_init=tf.zeros_initializer, output_W_init=L.XavierUniformInitializer(), output_b_init=tf.zeros_initializer, batch_size=None, input_var=None, input_layer=None, weight_normalization=False): Serializable.quick_init(self, locals()) self.name = name with tf.variable_scope(name): if input_layer is None: l_in = L.InputLayer(shape=(batch_size, ) + input_shape, input_var=input_var, name="input") else: l_in = input_layer self._layers = [l_in] # construct graph l_hid = feedforward(l_in, pre_hidden_sizes, hidden_nonlinearity, hidden_W_init=hidden_W_init, hidden_b_init=hidden_b_init, weight_normalization=weight_normalization, start_idx=0) l_lat = L.LatentLayer(l_hid, z_dim) l_hid = feedforward(l_lat, post_hidden_sizes, hidden_nonlinearity, hidden_W_init=hidden_W_init, hidden_b_init=hidden_b_init, weight_normalization=weight_normalization, start_idx=len(pre_hidden_sizes)) # create output layer l_out = L.DenseLayer(l_hid, num_units=output_dim, nonlinearity=output_nonlinearity, name="output", W=output_W_init, b=output_b_init, weight_normalization=weight_normalization) self._layers.append(l_out) self._l_lat = l_lat self._z_dim = z_dim self._l_in = l_in self._l_out = l_out self._l_tar = L.InputLayer(shape=(batch_size, ) + (output_dim, ), input_var=input_var, name="target") # complexity loss for variational posterior z_mu, z_sig = self._l_lat.get_dparams_for( L.get_output(self._l_lat.input_layer)) self.kl_cost = kl_from_prior(z_mu, z_sig, self._z_dim) # self._input_var = l_in.input_var self._output = L.get_output(l_out) LayersPowered.__init__(self, l_out)
def __init__( self, name, input_shape, output_dim, hidden_sizes, hidden_nonlinearity, output_nonlinearity, z_dim, z_idx, z_hidden_sizes, merge="mul", hidden_W_init=L.XavierUniformInitializer(), hidden_b_init=tf.zeros_initializer, output_W_init=L.XavierUniformInitializer(), output_b_init=tf.zeros_initializer, batch_size=None, input_var=None, input_layer=None, batch_normalization=False, weight_normalization=False, ): Serializable.quick_init(self, locals()) self.name = name total_dim = np.prod(input_shape) with tf.variable_scope(name): if input_layer is None: l_in = L.InputLayer(shape=(batch_size, ) + input_shape, input_var=input_var, name="input") else: l_in = input_layer self._layers = [l_in] # slice off features / observation l_feat = L.SliceLayer(l_in, indices=slice(0, total_dim - z_dim), name="l_feat") # slice off z "style" variable l_z = L.SliceLayer(l_in, indices=slice(total_dim - z_dim, total_dim), name="l_z") l_pre = feedforward(l_feat, hidden_sizes[:z_idx], hidden_nonlinearity, linear_output=True) with tf.variable_scope("z"): # if merging mul, ensure dimensionalities match. if merge == "mul": _head = [total_dim] + hidden_sizes _head = [_head[z_idx]] elif merge == "concat": _head = [] l_z = feedforward(l_z, z_hidden_sizes + _head, hidden_nonlinearity, linear_output=True) # merge latent code with features if merge == "mul": l_merge = L.ElemwiseMulLayer([l_pre, l_z]) elif merge == "concat": l_merge = L.ConcatLayer([l_pre, l_z], axis=1) else: raise NotImplementedError if z_idx > 0: l_merge = L.NonlinearityLayer(l_merge, hidden_nonlinearity) l_hid = feedforward(l_merge, hidden_sizes[z_idx:], hidden_nonlinearity, start_idx=z_idx) l_out = L.DenseLayer(l_hid, num_units=output_dim, nonlinearity=output_nonlinearity, name="output", W=output_W_init, b=output_b_init, weight_normalization=weight_normalization) #if batch_normalization: # ls = L.batch_norm(l_out) # l_out = ls[-1] # self._layers += ls self._layers.append(l_out) self._l_in = l_in self._l_out = l_out self._l_tar = L.InputLayer(shape=(batch_size, ) + (output_dim, ), input_var=input_var, name="target") # self._input_var = l_in.input_var self._output = L.get_output(l_out) LayersPowered.__init__(self, l_out)