outputs=[y_pred] ) opt = optimizer(learning_rate=learning_rate) model.compile( loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"] ) return model if __name__ == "__main__": data = DOGSCATS() train_dataset = data.get_train_set() val_dataset = data.get_val_set() test_dataset = data.get_test_set() img_shape = data.img_shape num_classes = data.num_classes # Global params epochs = 40 batch_size = 128 # Best model params params = { "dense_layer_size": 128,
x = Dense(units=num_classes, kernel_initializer=kernel_initializer)(x) y_pred = Activation("softmax")(x) model = Model(inputs=[input_img], outputs=[y_pred]) opt = optimizer(learning_rate=learning_rate) model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"]) return model if __name__ == "__main__": data = DOGSCATS() train_dataset = data.get_train_set() val_dataset = data.get_val_set() test_dataset = data.get_test_set() img_shape = data.img_shape num_classes = data.num_classes # Global params epochs = 100 batch_size = 128 params = { "dense_layer_size": 128, "kernel_initializer": "GlorotUniform",