def test_single_train_iter(self): single_train_iter( self, self.scenario, debug=False, args=AdditionalTrainerArgs(input_gradient_regularization=True, preload_data=True), )
def test_single_train_iter(self): # single_train_iter(self, self.get_scenario_parallel(), debug=False) import signal t1 = time.time() single_train_iter(self, self.get_scenario_none_parallel(), debug=False) none_paralle_time = time.time() - t1 import math def handler(signum, frame): print("Timeout reached!") raise TimeoutError( "Parallel inputpipeline took at least twice as long as the none parallel version. It's probably stuckt!" ) print( f"### Parallel input test timeout: {int(math.ceil(none_paralle_time * 2))} ######" ) signal.signal(signal.SIGALRM, handler) signal.alarm(int(math.ceil(none_paralle_time * 2))) single_train_iter(self, self.get_scenario_parallel(), debug=False) signal.alarm(0)
def test_single_train_iter(self): single_train_iter(self, self.get_scenario(), debug=False, lav_every_n=0)
def test_single_train_iter(self): single_train_iter(self, self.get_scenario(), debug=False)
def test_single_train_iter_debug(self): single_train_iter(self, TutorialScenarioTest, debug=True)
def test_single_train_iter(self): single_train_iter(self, TutorialScenarioTest, debug=False)
def test_single_train_iter(self): single_train_iter( self, TutorialScenarioTest, debug=False, args=AdditionalTrainerArgs(input_gradient_regularization=True))
def test_single_train_iter(self): single_train_iter(self, TemplateScenario)