示例#1
0
def main():

    sol = dict()
    for method in ['dopri5', 'adams']:
        for tol in [1e-3, 1e-6, 1e-9]:
            print('======= {} | tol={:e} ======='.format(method, tol))
            nfes = []
            times = []
            errs = []
            for c in ['A', 'B', 'C', 'D', 'E']:
                for i in ['1', '2', '3', '4', '5']:
                    diffeq, init, _ = getattr(detest, c + i)()
                    t0, y0 = init()
                    diffeq = NFEDiffEq(diffeq)

                    if not c + i in sol:
                        sol[c + i] = odeint(diffeq,
                                            y0,
                                            tf.stack([
                                                t0,
                                                tf.convert_to_tensor(
                                                    20., dtype=tf.float64)
                                            ]),
                                            atol=1e-12,
                                            rtol=1e-12,
                                            method='dopri5')[1]
                        diffeq.nfe = 0

                    start_time = time.time()
                    est = odeint(diffeq,
                                 y0,
                                 tf.stack([
                                     t0,
                                     tf.convert_to_tensor(20.,
                                                          dtype=tf.float64)
                                 ]),
                                 atol=tol,
                                 rtol=tol,
                                 method=method)
                    time_spent = time.time() - start_time

                    error = tf.sqrt(tf.reduce_mean((sol[c + i] - est[1])**2))

                    errs.append(error.numpy())
                    nfes.append(diffeq.nfe)
                    times.append(time_spent)

                    print('{}: NFE {} | Time {} | Err {:e}'.format(
                        c + i, diffeq.nfe, time_spent, error.numpy()))

            print('Total NFE {} | Total Time {} | GeomAvg Error {:e}'.format(
                np.sum(nfes), np.sum(times), gmean(errs)))
示例#2
0
    def test_dopri5_adjoint_against_dopri5(self):
        tf.keras.backend.set_floatx('float64')
        tf.compat.v1.set_random_seed(0)
        with tf.GradientTape(persistent=True) as tape:
            func, y0, t_points = self.problem()
            tape.watch(t_points)
            tape.watch(y0)
            ys = tfdiffeq.odeint_adjoint(func, y0, t_points, method='dopri5')

        gradys = 0.1 * tf.random.uniform(shape=ys.shape, dtype=tf.float64)
        adj_y0_grad, adj_t_grad, adj_A_grad = tape.gradient(
            ys, [y0, t_points, func.A], output_gradients=gradys)

        w_grad, b_grad = tape.gradient(ys, func.unused_module.variables)
        self.assertIsNone(w_grad)
        self.assertIsNone(b_grad)

        with tf.GradientTape() as tape:
            func, y0, t_points = self.problem()
            tape.watch(y0)
            tape.watch(t_points)
            ys = tfdiffeq.odeint(func, y0, t_points, method='dopri5')

        y_grad, t_grad, a_grad = tape.gradient(ys, [y0, t_points, func.A],
                                               output_gradients=gradys)

        self.assertLess(max_abs(y_grad - adj_y0_grad), 3e-4)
        self.assertLess(max_abs(t_grad - adj_t_grad), 1e-4)
        self.assertLess(max_abs(a_grad - adj_A_grad), 2e-3)
示例#3
0
 def test_dopri5(self):
     for ode in problems.PROBLEMS.keys():
         f, y0, t_points, sol = problems.construct_problem(TEST_DEVICE,
                                                           ode=ode)
         y = tfdiffeq.odeint(f, y0, t_points, method='dopri5')
         with self.subTest(ode=ode):
             self.assertLess(rel_error(sol, y), error_tol)
示例#4
0
    def call(self, x, training=None, eval_times=None, **kwargs):
        """
        Solves ODE starting from x.
        # Arguments:
            x: Tensor. Shape (batch_size, self.odefunc.data_dim)
        # Returns:
            Output tensor of forward pass.
        """
        # Forward pass corresponds to solving ODE, so reset number of function
        # evaluations counter
        self.odefunc.nfe.assign(0.)

        if eval_times is None:
            integration_time = tf.cast(tf.linspace(0., 1., 2), dtype=x.dtype)
        else:
            integration_time = tf.cast(eval_times, x.dtype)
        if self.odefunc.augment_dim > 0:
            # Add augmentation
            aug = tf.zeros([x.shape[0], self.odefunc.augment_dim],
                           dtype=x.dtype)
            # Shape (batch_size, data_dim + augment_dim)
            x_aug = tf.concat([x, aug], axis=-1)
        else:
            x_aug = x
        out = odeint(self.odefunc,
                     x_aug,
                     integration_time,
                     rtol=self.tol,
                     atol=self.tol,
                     method=self.method,
                     options=self.options)
        if eval_times is None:
            return out[1]  # Return only final time
        return out
示例#5
0
 def test_adjoint(self):
     """
     Test against dopri5
     """
     tf.compat.v1.set_random_seed(0)
     f, y0, t_points, _ = problems.construct_problem(TEST_DEVICE)
     y0 = tf.cast(y0, tf.float64)
     t_points = tf.cast(t_points, tf.float64)
 
     func = lambda y0, t_points: tfdiffeq.odeint(f, y0, t_points, method='dopri5')
 
     with tf.GradientTape() as tape:
         tape.watch(t_points)
         ys = func(y0, t_points)
 
     reg_t_grad, reg_a_grad, reg_b_grad = tape.gradient(ys, [t_points, f.a, f.b])
 
     f, y0, t_points, _ = problems.construct_problem(TEST_DEVICE)
     y0 = tf.cast(y0, tf.float64)
     t_points = tf.cast(t_points, tf.float64)
 
     y0 = (y0,)
 
     func = lambda y0, t_points: tfdiffeq.odeint_adjoint(f, y0, t_points, method='dopri5')
 
     with tf.GradientTape() as tape:
         tape.watch(t_points)
         ys = func(y0, t_points)
 
     grads = tape.gradient(ys, [t_points, f.a, f.b])
     adj_t_grad, adj_a_grad, adj_b_grad = grads
 
     self.assertLess(max_abs(reg_t_grad - adj_t_grad), 1.2e-7)
     self.assertLess(max_abs(reg_a_grad - adj_a_grad), 1.2e-7)
     self.assertLess(max_abs(reg_b_grad - adj_b_grad), 1.2e-7)
示例#6
0
文件: api_tests.py 项目: dbxmcf/node
    def test_adams_gradient(self):
        f, y0, t_points, sol = construct_problem(TEST_DEVICE)

        tuple_f = lambda t, y: (f(t, y[0]), f(t, y[1]))

        for i in range(2):
            func = lambda y0, t_points: tfdiffeq.odeint(tuple_f, (y0, y0), t_points, method='adams')[i]
            self.assertTrue(gradcheck(func, (y0, t_points)))
示例#7
0
 def call(self, x):
     # self.integration_time = tf.cast(self.integration_time, x.dtype)
     out = odeint(self.odefunc,
                  x,
                  self.integration_time,
                  rtol=args.tol,
                  atol=args.tol,
                  method=args.method)
     return tf.cast(out[1], tf.float32)  # necessary cast
示例#8
0
文件: api_tests.py 项目: dbxmcf/node
    def test_adams(self):
        f, y0, t_points, sol = construct_problem(TEST_DEVICE)

        tuple_f = lambda t, y: (f(t, y[0]), f(t, y[1]))
        tuple_y0 = (y0, y0)

        tuple_y = tfdiffeq.odeint(tuple_f, tuple_y0, t_points, method='adams')
        max_error0 = tf.reduce_max(sol - tuple_y[0])
        max_error1 = tf.reduce_max(sol - tuple_y[1])
        self.assertLess(max_error0, eps)
        self.assertLess(max_error1, eps)
示例#9
0
    def test_adaptive_heun(self):
        for ode in problems.PROBLEMS.keys():
            if ode == 'sine':
                # Sine test never finishes.
                continue

            f, y0, t_points, sol = problems.construct_problem(TEST_DEVICE,
                                                              ode=ode)
            y = tfdiffeq.odeint(f, y0, t_points, method='adaptive_heun')
            with self.subTest(ode=ode):
                self.assertLess(rel_error(sol, y), error_tol)
示例#10
0
    def step(self, dt=0.01, n_steps=10, *args, **kwargs):
        """
        Steps the system forward by dt.
        Uses tfdiffeq.odeint for integration.

        # Arguments:
            dt: Float - time step
            n_steps: Int - number of sub-steps to return values for.
                           The integrator may decide to use more steps to achieve the
                           set tolerance.
        # Returns:
            x: tf.Tensor, shape=(8,) - new state of the system
        """
        t = tf.linspace(0., dt, n_steps)
        self.x = odeint(self, self.x, t, *args, **kwargs)
        return self.x
示例#11
0
    def call(self, x, training=None, eval_times=None, **kwargs):
        """
        Solves ODE starting from x.
        # Arguments:
            x: Tensor. Shape (batch_size, self.odefunc.data_dim)
            eval_times: None or tf.Tensor.
                If None, returns solution of ODE at final time t=1. If tf.Tensor
                then returns full ODE trajectory evaluated at points in eval_times.
        # Returns:
            Output tensor of forward pass.
        """
        # Forward pass corresponds to solving ODE, so reset number of function
        # evaluations counter
        self.odefunc.nfe.assign(0.)

        if eval_times is None:
            integration_time = tf.cast(tf.linspace(0., 1., 2), dtype=x.dtype)
        else:
            integration_time = tf.cast(eval_times, x.dtype)
        if self.odefunc.augment_dim > 0:
            if self.is_conv:
                # Add augmentation
                batch_size, height, width, channels = x.shape
                if self.channel_axis == 1:
                    aug = tf.zeros([batch_size, self.odefunc.augment_dim,
                                    height, width], dtype=x.dtype)
                else:
                    aug = tf.zeros([batch_size, height, width,
                                    self.odefunc.augment_dim], dtype=x.dtype)
                # Shape (batch_size, channels + augment_dim, height, width)
                x_aug = tf.concat([x, aug], axis=self.channel_axis)
            else:
                # Add augmentation
                aug = tf.zeros([x.shape[0], self.odefunc.augment_dim], dtype=x.dtype)
                # Shape (batch_size, data_dim + augment_dim)
                x_aug = tf.concat([x, aug], axis=-1)
        else:
            x_aug = x

        out = odeint(self.odefunc, x_aug, integration_time,
                     rtol=self.tol, atol=self.tol, method=self.method,
                     options=self.options)
        if eval_times is None:
            return out[1]  # Return only final time
        return out
示例#12
0
    def test_explicit_adams(self):
        f, y0, t_points, sol = problems.construct_problem(TEST_DEVICE)

        y = tfdiffeq.odeint(f, y0, t_points, method='explicit_adams')
        self.assertLess(rel_error(sol, y), error_tol)
示例#13
0
    def test_dopri5(self):
        f, y0, t_points, sol = problems.construct_problem(TEST_DEVICE,
                                                          reverse=True)

        y = tfdiffeq.odeint(f, y0, t_points[0:1], method='dopri5')
        self.assertLess(max_abs(sol[0] - y), error_tol)
示例#14
0
            checkpoint_manager.restore_or_initialize()

            if latest_checkpoint is not None:
                print('Loaded ckpt from {}'.format(ckpt_path))

        if args.mode == 'train':
            try:
                for itr in range(1, args.niters + 1):
                    with tf.GradientTape() as tape:
                        x, logp_diff_t1 = get_batch(args.num_samples)

                        z_t, logp_diff_t = odeint(
                            func,
                            (x, logp_diff_t1),
                            tf.convert_to_tensor([t1, t0], dtype=float_dtype),
                            atol=1e-5,
                            rtol=1e-5,
                            method='dopri5',
                        )

                        z_t0, logp_diff_t0 = z_t[-1], logp_diff_t[-1]

                        # Float 32 required for log_prob()
                        z_t0 = tf.cast(z_t0, tf.float32)
                        logp_diff_t0 = tf.cast(logp_diff_t0, tf.float32)

                        logp_x = p_z0.log_prob(z_t0) - tf.reshape(
                            logp_diff_t0, [-1])

                        # Recast
                        logp_x = tf.cast(logp_x, float_dtype)
示例#15
0
    def test_adams(self):
        f, y0, t_points, _ = problems.construct_problem(TEST_DEVICE)

        func = lambda y0, t_points: tfdiffeq.odeint(f, y0, t_points, method='adams')
        self.assertTrue(gradcheck(func, (y0, t_points)))
示例#16
0
args = parser.parse_args()

device = 'gpu:' + str(args.gpu) if tf.test.is_gpu_available() else 'cpu:0'

true_y0 = tf.convert_to_tensor(1, dtype=tf.float64)
time = np.linspace(0, 1., num=args.data_size)
t = tf.convert_to_tensor(time, dtype=tf.float32)


def true_val(t, y):
    return 0.2 * np.exp(t) * np.exp(5 * y) + 0.6


class Lambda(tf.keras.Model):
    def call(self, t, y):
        dydt = 5 * y - 3
        return dydt


real_y = [true_val(t, true_y0.numpy()) for t in time]
pred_y = odeint(Lambda(), true_y0, t, method=args.method)

mse = np.mean(np.square(real_y - pred_y.numpy()))
print('MSE : ', mse)
print("Number of solutions : ", pred_y.shape)

plt.plot(time, real_y, label='real')
plt.plot(time, pred_y.numpy(), label='pred')
plt.legend()
plt.show()
示例#17
0


### ----- Predict using trained model ---------------
if scale_time == True:
    times_predict = times_predict/scale_time

if adjoint == True:
    predicted_states = adjoint_odeint(model, tf.expand_dims(init_state, axis=0),
                                        tf.convert_to_tensor(times_predict), method=solver)
    predicted_states = tf.squeeze(predicted_states)
    if augmented == True:
        predicted_states = np.delete(predicted_states,slice(state_len,state_len+aug_dims),axis=1)

elif adjoint == False:
    predicted_states = odeint(model, tf.expand_dims(init_state, axis=0),
                                tf.convert_to_tensor(times_predict), method=solver)
    predicted_states = tf.squeeze(predicted_states)
    if augmented == True:
        predicted_states = np.delete(predicted_states,slice(state_len,state_len+aug_dims),axis=1)


### ---- Post-process predicted states ---------------
if scale_states == True:
    inverse_scaler = lambda z: ((z + 1)*(max_g - min_g)/2 + min_g)
    predicted_states = inverse_scaler(predicted_states)
    true_state_array = inverse_scaler(true_state_array)
    #predicted_states = scale_mm.inverse_transform(predicted_states)

if scale_time == True:
    times_predict = times_predict*scale_time
示例#18
0
def visualize(model,
              x_val,
              PLOT_DIR,
              TIME_OF_RUN,
              args,
              ode_model=True,
              epoch=0,
              is_mdn=False):
    """Visualize a tf.keras.Model for an aircraft model.
    # Arguments:
        model: A Keras model, that accepts t and x when called
        x_val: np.ndarray, shape=(1, samples_per_series, 4) or (samples_per_series, 4)
                The reference time series, against which the model will be compared
        PLOT_DIR: Directory to plot in
        TIME_OF_RUN: Time at which the run began
        ode_model: whether the model outputs the derivative of the current step (True),
                   or the value of the next step (False)
        args: input arguments from main script
    """
    x_val = x_val.reshape(2, -1, 4)
    dt = 0.1
    t = tf.linspace(0., 100., int(100. / dt) + 1)
    # Compute the predicted trajectories
    if ode_model:
        x0 = tf.convert_to_tensor(x_val[:, 0])
        x_t = odeint(model, x0, t, rtol=1e-5, atol=1e-5).numpy()
        x_t_extrap = x_t[:, 0]
        x_t_interp = x_t[:, 1]
    else:  # LSTM model
        x_t_extrap = np.zeros_like(x_val[0])
        x_t_extrap[0] = x_val[0, 0]
        x_t_interp = np.zeros_like(x_val[1])
        x_t_interp[0] = x_val[1, 0]
        # Always injects the entire time series because keras is slow when using
        # varying series lengths and the future timesteps don't affect the predictions
        # before it anyways.
        for i in range(1, len(t)):
            x_t_extrap[i:i + 1] = model(0., np.expand_dims(x_t_extrap,
                                                           axis=0))[0, i - 1:i]
            x_t_interp[i:i + 1] = model(0., np.expand_dims(x_t_interp,
                                                           axis=0))[0, i - 1:i]

    x_t = np.stack([x_t_extrap, x_t_interp], axis=0)
    # Plot the generated trajectories
    fig = plt.figure(figsize=(12, 8), facecolor='white')
    ax_traj = fig.add_subplot(231, frameon=False)
    ax_phase = fig.add_subplot(232, frameon=False)
    ax_vecfield = fig.add_subplot(233, frameon=False)
    ax_vec_error_abs = fig.add_subplot(234, frameon=False)
    ax_vec_error_rel = fig.add_subplot(235, frameon=False)
    ax_3d = fig.add_subplot(236, projection='3d')
    ax_traj.cla()
    ax_traj.set_title('Trajectories')
    ax_traj.set_xlabel('t')
    ax_traj.set_ylabel('V,gamma')
    for i in range(4):
        ax_traj.plot(t.numpy(), x_val[0, :, i], 'g-')
        ax_traj.plot(t.numpy(), x_t[0, :, i], 'b--')
    ax_traj.set_xlim(min(t.numpy()), max(t.numpy()))
    ax_traj.set_ylim(-2, 2)
    ax_traj.legend()

    ax_phase.cla()
    ax_phase.set_title('Phase Portrait phugoid')
    ax_phase.set_xlabel('V')
    ax_phase.set_ylabel('gamma')
    ax_phase.plot(x_val[0, :, 0], x_val[0, :, 1], 'g-')
    ax_phase.plot(x_t[0, :, 0], x_t[0, :, 1], 'b--')
    ax_phase.plot(x_val[1, :, 0], x_val[1, :, 1], 'g-')
    ax_phase.plot(x_t[1, :, 0], x_t[1, :, 1], 'b--')
    ax_phase.set_xlim(-6, 6)
    ax_phase.set_ylim(-2, 2)

    ax_vecfield.cla()
    ax_vecfield.set_title('Learned Vector Field')
    ax_vecfield.set_xlabel('V')
    ax_vecfield.set_ylabel('gamma')

    steps = 61
    y, x = np.mgrid[-6:6:complex(0, steps), -6:6:complex(0, steps)]
    zeros = tf.zeros_like(x)
    input_grid = np.stack([x, y, zeros, zeros], -1)
    ref_func = Lambda()
    dydt_ref = ref_func(0., input_grid.reshape(steps * steps, 4)).numpy()
    mag_ref = 1e-8 + np.linalg.norm(dydt_ref, axis=-1).reshape(steps, steps)
    dydt_ref = dydt_ref.reshape(steps, steps, 4)

    if ode_model:  # is Dense-Net or NODE-Net or NODE-e2e
        dydt = model(0., input_grid.reshape(steps * steps, 4)).numpy()
    else:  # is LSTM
        # Compute artificial x_dot by numerically diffentiating:
        # x_dot \approx (x_{t+1}-x_t)/d
        yt_1 = model(0., input_grid.reshape(steps * steps, 1, 4))[:, 0]
        dydt = (np.array(yt_1) - input_grid.reshape(steps * steps, 4)) / dt

    dydt_abs = dydt.reshape(steps, steps, 4)
    dydt_unit = dydt_abs / np.linalg.norm(dydt_abs, axis=-1, keepdims=True)

    ax_vecfield.streamplot(x,
                           y,
                           dydt_unit[:, :, 0],
                           dydt_unit[:, :, 1],
                           color="black")
    ax_vecfield.set_xlim(-4, 4)
    ax_vecfield.set_ylim(-2, 2)

    ax_vec_error_abs.cla()
    ax_vec_error_abs.set_title('Abs. error of V\', gamma\'')
    ax_vec_error_abs.set_xlabel('V')
    ax_vec_error_abs.set_ylabel('gamma')
    abs_dif = np.clip(np.linalg.norm(dydt_abs - dydt_ref, axis=-1), 0., 3.)
    c1 = ax_vec_error_abs.contourf(x, y, abs_dif, 100)
    plt.colorbar(c1, ax=ax_vec_error_abs)

    ax_vec_error_abs.set_xlim(-6, 6)
    ax_vec_error_abs.set_ylim(-6, 6)

    ax_vec_error_rel.cla()
    ax_vec_error_rel.set_title('Rel. error of V\', gamma\'')
    ax_vec_error_rel.set_xlabel('V')
    ax_vec_error_rel.set_ylabel('gamma')

    rel_dif = np.clip(abs_dif / mag_ref, 0., 1.)
    c2 = ax_vec_error_rel.contourf(x, y, rel_dif, 100)
    plt.colorbar(c2, ax=ax_vec_error_rel)

    ax_vec_error_rel.set_xlim(-6, 6)
    ax_vec_error_rel.set_ylim(-6, 6)

    ax_3d.cla()
    ax_3d.set_title('3D Trajectory')
    ax_3d.set_xlabel('V')
    ax_3d.set_ylabel('gamma')
    ax_3d.set_zlabel('alpha')
    ax_3d.scatter(x_val[0, :, 0],
                  x_val[0, :, 1],
                  x_val[0, :, 2],
                  c='g',
                  s=4,
                  marker='^')
    ax_3d.scatter(x_t[0, :, 0],
                  x_t[0, :, 1],
                  x_t[0, :, 2],
                  c='b',
                  s=4,
                  marker='o')
    ax_3d.view_init(elev=40., azim=60.)

    fig.tight_layout()
    plt.savefig(PLOT_DIR + '/{:03d}'.format(epoch))
    plt.close()

    # Compute Metrics
    phase_error_extrap_lp, phase_error_extrap_sp = relative_phase_error(
        x_t[0], x_val[0])
    traj_error_extrap = trajectory_error(x_t[0], x_val[0])

    phase_error_interp_lp, phase_error_interp_sp = relative_phase_error(
        x_t[1], x_val[1])
    traj_error_interp = trajectory_error(x_t[1], x_val[1])

    wall_time = (datetime.datetime.now() - datetime.datetime.strptime(
        TIME_OF_RUN, "%Y%m%d-%H%M%S")).total_seconds()
    string = "{},{},{:.7f},{:.7f},{:.7f},{:.7f},{:.7f},{:.7f}\n".format(
        wall_time, epoch, phase_error_interp_lp, phase_error_interp_sp,
        phase_error_extrap_lp, phase_error_extrap_sp, traj_error_interp,
        traj_error_extrap)

    file_path = (PLOT_DIR + TIME_OF_RUN + "results" + str(args.lr) +
                 str(args.dataset_size) + str(args.batch_size) + ".csv")
    if not os.path.isfile(file_path):
        title_string = ("wall_time,epoch," +
                        "phase_error_interp_lp,phase_error_interp_sp," +
                        "phase_error_extrap_lp,phase_error_extrap_sp," +
                        "traj_err_interp, traj_err_extrap\n")
        fd = open(file_path, 'a')
        fd.write(title_string)
        fd.close()
    fd = open(file_path, 'a')
    fd.write(string)
    fd.close()

    # Print Jacobian
    if ode_model:
        np.set_printoptions(suppress=True, precision=4, linewidth=150)
        # The first Jacobian is averaged over 100 randomly sampled points from U(-1, 1)
        jac = tf.zeros((4, 4))
        for i in range(100):
            with tf.GradientTape(persistent=True) as g:
                x = (2 * tf.random.uniform((1, 4)) - 1)
                g.watch(x)
                y = model(0, x)
            jac = jac + g.jacobian(y, x)[0, :, 0]
        print(jac.numpy() / 100)

        with tf.GradientTape(persistent=True) as g:
            x = tf.zeros([1, 4])
            g.watch(x)
            y = model(0, x)
        print(g.jacobian(y, x)[0, :, 0])
示例#19
0
t = tf.convert_to_tensor(t_n, dtype=tf.float32)

true_A = tf.convert_to_tensor([[1, -0.2], [-0.2, 1]], dtype=tf.float64)


class Lambda(tf.keras.Model):
    def call(self, t, y):
        dydt = tf.matmul(y, true_A)
        return dydt


with tf.device(device):
    t1 = time.time()
    pred_y = odeint(Lambda(),
                    true_y0,
                    t,
                    rtol=args.rtol,
                    atol=args.atol,
                    method=args.method)
    t2 = time.time()

print("Number of solutions : ", pred_y.shape)
print("Time taken : ", t2 - t1)

pred_y = pred_y.numpy()

plt.plot(t_n, pred_y[:, 0, 0], t_n, pred_y[:, 0, 1], 'r-', label='trajectory')
# plt.plot(time, pred_y.numpy(), 'b--', label='y')
plt.legend()
plt.xlabel('time')
plt.ylabel('magnitude')
plt.show()
示例#20
0
    def grad(*grad_output, variables=None):
        global _arguments
        flat_params = _flatten(variables)

        func = _arguments.func
        adjoint_method = _arguments.adjoint_method
        adjoint_rtol = _arguments.rtol
        adjoint_atol = _arguments.atol
        adjoint_options = _arguments.adjoint_options

        n_tensors = len(ans)
        f_params = tuple(variables)

        # TODO: use a tf.keras.Model and call odeint_adjoint to implement higher order derivatives.
        def augmented_dynamics(t, y_aug):
            # Dynamics of the original system augmented with
            # the adjoint wrt y, and an integrator wrt t and args.

            y, adj_y = y_aug[:n_tensors], y_aug[n_tensors:2 * n_tensors]  # Ignore adj_time and adj_params.

            with tf.GradientTape() as tape:
                tape.watch(t)
                tape.watch(y)
                func_eval = func(t, y)
                func_eval = tf.convert_to_tensor(func_eval)

            gradys = -tf.stack(adj_y)
            if type(func_eval) in [list, tuple]:
                for eval_ix in range(len(func_eval)):
                    if len(gradys[eval_ix].shape) < len(func_eval[eval_ix].shape):
                        gradys[eval_ix] = tf.expand_dims(gradys[eval_ix], axis=0)

            else:
                if len(gradys.shape) < len(func_eval.shape):
                    gradys = tf.expand_dims(gradys, axis=0)
            vjp_t, *vjp_y_and_params = tape.gradient(
                func_eval,
                (t,) + y + f_params,
                output_gradients=gradys,
                unconnected_gradients=tf.UnconnectedGradients.ZERO
            )

            vjp_y = vjp_y_and_params[:n_tensors]
            vjp_params = vjp_y_and_params[n_tensors:]
            vjp_params = _flatten(vjp_params)

            if _check_len(f_params) == 0:
                vjp_params = tf.convert_to_tensor(0., dtype=vjp_y[0].dype)
                vjp_params = move_to_device(vjp_params, vjp_y[0].device)

            return (*func_eval, *vjp_y, vjp_t, vjp_params)

        T = ans[0].shape[0]
        if isinstance(grad_output, (tf.Tensor, tf.Variable)):
            adj_y = [grad_output[-1]]
        else:
            adj_y = tuple(grad_output_[-1] for grad_output_ in grad_output)

        adj_params = tf.zeros_like(flat_params, dtype=flat_params.dtype)
        adj_time = move_to_device(tf.convert_to_tensor(0., dtype=t.dtype), t.device)
        time_vjps = []
        for i in range(T - 1, 0, -1):

            ans_i = tuple(ans_[i] for ans_ in ans)

            if isinstance(grad_output, (tf.Tensor, tf.Variable)):
                grad_output_i = [grad_output[i]]
            else:
                grad_output_i = tuple(grad_output_[i] for grad_output_ in grad_output)

            func_i = func(t[i], ans_i)

            if not isinstance(func_i, Iterable):
                func_i = [func_i]

            # Compute the effect of moving the current time measurement point.
            dLd_cur_t = sum(
                tf.reshape(tf.matmul(tf.reshape(func_i_, [1, -1]), tf.reshape(grad_output_i_, [-1, 1])), [1])
                for func_i_, grad_output_i_ in zip(func_i, grad_output_i)
            )

            adj_time = adj_time - dLd_cur_t
            time_vjps.append(dLd_cur_t)

            # Run the augmented system backwards in time.
            if isinstance(adj_params, Iterable):
                if _numel(adj_params) == 0:
                    adj_params = move_to_device(tf.convert_to_tensor(0., dtype=adj_y[0].dtype), adj_y[0].device)

            aug_y0 = (*ans_i, *adj_y, adj_time, adj_params)

            aug_ans = odeint(
                augmented_dynamics,
                aug_y0,
                tf.convert_to_tensor([t[i], t[i - 1]]),
                rtol=adjoint_rtol, atol=adjoint_atol, method=adjoint_method, options=adjoint_options
            )

            # Unpack aug_ans.
            adj_y = aug_ans[n_tensors:2 * n_tensors]
            adj_time = aug_ans[2 * n_tensors]
            adj_params = aug_ans[2 * n_tensors + 1]

            adj_y = tuple(adj_y_[1] if _check_len(adj_y_) > 0 else adj_y_ for adj_y_ in adj_y)
            if _check_len(adj_time) > 0: adj_time = adj_time[1]
            if _check_len(adj_params) > 0: adj_params = adj_params[1]

            adj_y = tuple(adj_y_ + grad_output_[i - 1] for adj_y_, grad_output_ in zip(adj_y, grad_output))

            del aug_y0, aug_ans

        time_vjps.append(adj_time)
        time_vjps = tf.concat(time_vjps[::-1], 0)

        # reshape the parameters back into the correct variable shapes
        var_flat_lens = [_numel(v, dtype=tf.int32).numpy() for v in variables]
        var_shapes = [v.shape for v in variables]

        adj_params_splits = tf.split(adj_params, var_flat_lens)
        adj_params_list = [tf.reshape(p, v_shape)
                           for p, v_shape in zip(adj_params_splits, var_shapes)]
        return (*adj_y, time_vjps), adj_params_list
示例#21
0
if __name__ == '__main__':

    end = time.time()

    time_meter = RunningAverageMeter(0.97)
    loss_meter = RunningAverageMeter(0.97)
    with tf.device(device):
        func = ODEFunc()
        lr = tf.Variable(args.lr)
        optimizer = tf.keras.optimizers.Adam(lr, clipvalue=0.5)

        for itr in range(1, args.niters + 1):
            with tf.GradientTape() as tape:
                batch_x0, batch_t, batch_x = get_batch()
                pred_x = odeint(func, batch_x0, batch_t,
                                method=args.method)  # (T, B, D)
                ex_loss = tf.reduce_sum(tf.math.square(pred_x - batch_x),
                                        axis=-1)
                loss = tf.reduce_mean(ex_loss)
                weights = [
                    v for v in func.trainable_variables if 'bias' not in v.name
                ]
                l2_loss = tf.add_n(
                    [tf.reduce_sum(tf.math.square(v)) for v in weights]) * 1e-6
                loss = loss + l2_loss

            nfe = func.nfe.numpy()
            func.nfe.assign(0.)
            grads = tape.gradient(loss, func.trainable_variables)
            nbe = func.nfe.numpy()
            func.nfe.assign(0.)
示例#22
0
def visualize(model,
              x_val,
              PLOT_DIR,
              TIME_OF_RUN,
              args,
              ode_model=True,
              latent=False,
              epoch=0,
              is_mdn=False):
    """Visualize a tf.keras.Model for a single pendulum.
    # Arguments:
        model: A Keras model, that accepts t and x when called
        x_val: np.ndarray, shape=(1, samples_per_series, 2) or (samples_per_series, 2)
                The reference time series, against which the model will be compared
        PLOT_DIR: Directory to plot in
        TIME_OF_RUN: Time at which the run began
        ode_model: whether the model outputs the derivative of the current step (True),
                   or the value of the next step (False)
        args: input arguments from main script
    """
    x_val = x_val.reshape(2, -1, 2)
    dt = 0.01
    t = tf.linspace(0., 10., int(10. / dt) + 1)
    # Compute the predicted trajectories
    if ode_model:
        x0_extrap = tf.stack([x_val[0, 0]])
        x_t_extrap = odeint(model, x0_extrap, t, rtol=1e-5,
                            atol=1e-5).numpy()[:, 0]
        x0_interp = tf.stack([x_val[1, 0]])
        x_t_interp = odeint(model, x0_interp, t, rtol=1e-5,
                            atol=1e-5).numpy()[:, 0]
    else:  # LSTM model
        x_t_extrap = np.zeros_like(x_val[0])
        x_t_extrap[0] = x_val[0, 0]
        x_t_interp = np.zeros_like(x_val[1])
        x_t_interp[0] = x_val[1, 0]
        # Always injects the entire time series because keras is slow when using
        # varying series lengths and the future timesteps don't affect the predictions
        # before it anyways.
        if is_mdn:
            import mdn
            for i in range(1, len(t)):
                pred_extrap = model(0., np.expand_dims(x_t_extrap,
                                                       axis=0))[0, i - 1:i]
                x_t_extrap[i:i + 1] = mdn.sample_from_output(
                    pred_extrap.numpy()[0], 2, 5, temp=1.)
                pred_interp = model(0., np.expand_dims(x_t_interp,
                                                       axis=0))[0, i - 1:i]
                x_t_interp[i:i + 1] = mdn.sample_from_output(
                    pred_interp.numpy()[0], 2, 5, temp=1.)
        else:
            for i in range(1, len(t)):
                x_t_extrap[i:i + 1] = model(0.,
                                            np.expand_dims(x_t_extrap,
                                                           axis=0))[0, i - 1:i]
                x_t_interp[i:i + 1] = model(0.,
                                            np.expand_dims(x_t_interp,
                                                           axis=0))[0, i - 1:i]

    x_t = np.stack([x_t_extrap, x_t_interp], axis=0)
    # Plot the generated trajectories
    fig = plt.figure(figsize=(12, 8), facecolor='white')
    ax_traj = fig.add_subplot(231, frameon=False)
    ax_phase = fig.add_subplot(232, frameon=False)
    ax_vecfield = fig.add_subplot(233, frameon=False)
    ax_vec_error_abs = fig.add_subplot(234, frameon=False)
    ax_vec_error_rel = fig.add_subplot(235, frameon=False)
    ax_energy = fig.add_subplot(236, frameon=False)
    ax_traj.cla()
    ax_traj.set_title('Trajectories')
    ax_traj.set_xlabel('t')
    ax_traj.set_ylabel('x,y')
    ax_traj.plot(t.numpy(), x_val[0, :, 0], t.numpy(), x_val[0, :, 1], 'g-')
    ax_traj.plot(t.numpy(), x_t[0, :, 0], '--', t.numpy(), x_t[0, :, 1], 'b--')
    ax_traj.set_xlim(min(t.numpy()), max(t.numpy()))
    ax_traj.set_ylim(-6, 6)
    ax_traj.legend()

    ax_phase.cla()
    ax_phase.set_title('Phase Portrait')
    ax_phase.set_xlabel('x')
    ax_phase.set_ylabel('x_dt')
    ax_phase.plot(x_val[0, :, 0], x_val[0, :, 1], 'g--')
    ax_phase.plot(x_t[0, :, 0], x_t[0, :, 1], 'b--')
    ax_phase.plot(x_val[1, :, 0], x_val[1, :, 1], 'g--')
    ax_phase.plot(x_t[1, :, 0], x_t[1, :, 1], 'b--')
    ax_phase.set_xlim(-6, 6)
    ax_phase.set_ylim(-6, 6)

    ax_vecfield.cla()
    ax_vecfield.set_title('Learned Vector Field')
    ax_vecfield.set_xlabel('x')
    ax_vecfield.set_ylabel('x_dt')

    steps = 61
    y, x = np.mgrid[-6:6:complex(0, steps), -6:6:complex(0, steps)]
    ref_func = Lambda()
    dydt_ref = ref_func(0.,
                        np.stack([x, y], -1).reshape(steps * steps,
                                                     2)).numpy()
    mag_ref = 1e-8 + np.linalg.norm(dydt_ref, axis=-1).reshape(steps, steps)
    dydt_ref = dydt_ref.reshape(steps, steps, 2)

    if ode_model:  # is Dense-Net or NODE-Net or NODE-e2e
        dydt = model(0.,
                     np.stack([x, y], -1).reshape(steps * steps, 2)).numpy()
    else:  # is LSTM
        # Compute artificial x_dot by numerically diffentiating:
        # x_dot \approx (x_{t+1}-x_t)/dt
        yt_1 = model(0.,
                     np.stack([x, y], -1).reshape(steps * steps, 1, 2))[:, 0]
        if is_mdn:  # have to sample from output Gaussians
            yt_1 = np.apply_along_axis(mdn.sample_from_output,
                                       1,
                                       yt_1.numpy(),
                                       2,
                                       5,
                                       temp=.1)[:, 0]
        dydt = (np.array(yt_1) -
                np.stack([x, y], -1).reshape(steps * steps, 2)) / dt

    dydt_abs = dydt.reshape(steps, steps, 2)
    dydt_unit = dydt_abs / np.linalg.norm(dydt_abs, axis=-1,
                                          keepdims=True)  # make unit vector

    ax_vecfield.streamplot(x,
                           y,
                           dydt_unit[:, :, 0],
                           dydt_unit[:, :, 1],
                           color="black")
    ax_vecfield.set_xlim(-6, 6)
    ax_vecfield.set_ylim(-6, 6)

    ax_vec_error_abs.cla()
    ax_vec_error_abs.set_title('Abs. error of xdot')
    ax_vec_error_abs.set_xlabel('x')
    ax_vec_error_abs.set_ylabel('x_dt')

    abs_dif = np.clip(np.linalg.norm(dydt_abs - dydt_ref, axis=-1), 0., 3.)
    c1 = ax_vec_error_abs.contourf(x, y, abs_dif, 100)
    plt.colorbar(c1, ax=ax_vec_error_abs)

    ax_vec_error_abs.set_xlim(-6, 6)
    ax_vec_error_abs.set_ylim(-6, 6)

    ax_vec_error_rel.cla()
    ax_vec_error_rel.set_title('Rel. error of xdot')
    ax_vec_error_rel.set_xlabel('x')
    ax_vec_error_rel.set_ylabel('x_dt')

    rel_dif = np.clip(abs_dif / mag_ref, 0., 1.)
    c2 = ax_vec_error_rel.contourf(x, y, rel_dif, 100)
    plt.colorbar(c2, ax=ax_vec_error_rel)

    ax_vec_error_rel.set_xlim(-6, 6)
    ax_vec_error_rel.set_ylim(-6, 6)

    ax_energy.cla()
    ax_energy.set_title('Total Energy')
    ax_energy.set_xlabel('t')
    ax_energy.plot(
        np.arange(1001) / 100.1,
        np.array([total_energy(x_) for x_ in x_t_interp]))

    fig.tight_layout()
    plt.savefig(PLOT_DIR + '/{:03d}'.format(epoch))
    plt.close()

    # Compute Metrics
    energy_drift_extrap = relative_energy_drift(x_t[0], x_val[0])
    phase_error_extrap = relative_phase_error(x_t[0], x_val[0])
    traj_error_extrap = trajectory_error(x_t[0], x_val[0])

    energy_drift_interp = relative_energy_drift(x_t[1], x_val[1])
    phase_error_interp = relative_phase_error(x_t[1], x_val[1])
    traj_error_interp = trajectory_error(x_t[1], x_val[1])

    wall_time = (datetime.datetime.now() - datetime.datetime.strptime(
        TIME_OF_RUN, "%Y%m%d-%H%M%S")).total_seconds()
    string = "{},{},{},{},{},{},{},{}\n".format(
        wall_time, epoch, energy_drift_interp, energy_drift_extrap,
        phase_error_interp, phase_error_extrap, traj_error_interp,
        traj_error_extrap)
    file_path = (PLOT_DIR + TIME_OF_RUN + "results" + str(args.lr) +
                 str(args.dataset_size) + str(args.batch_size) + ".csv")
    if not os.path.isfile(file_path):
        title_string = (
            "wall_time,epoch,energy_drift_interp,energy_drift_extrap, phase_error_interp,"
            + "phase_error_extrap, traj_err_interp, traj_err_extrap\n")
        fd = open(file_path, 'a')
        fd.write(title_string)
        fd.close()
    fd = open(file_path, 'a')
    fd.write(string)
    fd.close()

    # Print Jacobian
    if ode_model:
        np.set_printoptions(suppress=True, precision=4, linewidth=150)
        # The first Jacobian is averaged over 100 randomly sampled points from U(-1, 1)
        jac = tf.zeros((2, 2))
        for i in range(100):
            with tf.GradientTape(persistent=True) as g:
                x = (2 * tf.random.uniform((1, 2)) - 1)
                g.watch(x)
                y = model(0, x)
            jac = jac + g.jacobian(y, x)[0, :, 0]
        print(jac.numpy() / 100)

        with tf.GradientTape(persistent=True) as g:
            x = tf.zeros([1, 2])
            g.watch(x)
            y = model(0, x)
        print(g.jacobian(y, x)[0, :, 0])
示例#23
0
    def test_rk4(self):
        f, y0, t_points, sol = problems.construct_problem(TEST_DEVICE,
                                                          reverse=True)

        y = tfdiffeq.odeint(f, y0, t_points, method='rk4')
        self.assertLess(rel_error(sol, y), error_tol)
    else:
        tf.keras.backend.set_floatx('float64')
    x_0 = tf.constant(1., dtype=dtype)  # not important for Gradient
    a = tf.constant(2., dtype=dtype)
    b = tf.constant(2., dtype=dtype)
    T = tf.constant(2., dtype=dtype)
    t = tf.cast(tf.linspace(0., T, 2), dtype)

    odemodel = ODE(a, b, dtype)
    for rtol in np.logspace(-13, 0, 14)[::-1]:
        print('rtol:', rtol)
        # Run forward and backward passes, while tracking the time
        with tf.device('/gpu:0'):
            t0 = time.time()
            with tf.GradientTape() as g:
                y_sol = odeint(odemodel, x_0, t, rtol=rtol, atol=1e-10)[-1]
            t1 = time.time()
            dYdX_backprop = g.gradient(y_sol, odemodel.b).numpy()
            t2 = time.time()
            with tf.GradientTape() as g:
                y_sol_adj = odeint_adjoint(odemodel, x_0, t, rtol=rtol, atol=1e-10)[-1]
            t3 = time.time()
            dYdX_adjoint = g.gradient(y_sol_adj, odemodel.b).numpy()
            t4 = time.time()
        dYdX_exact = exact_derivative(a, b, T).numpy()
        rel_err_adj = abs(dYdX_adjoint-dYdX_exact)/dYdX_exact
        rel_err_bp = abs(dYdX_backprop-dYdX_exact)/dYdX_exact
        print('Adjoint:', rel_err_adj, dtype)
        print('Backprop:', rel_err_bp, dtype)
        fd = open(file_path, 'a')
        fd.write('{},{},adjoint,{},{},{},{},{}\n'.format(dtype,
示例#25
0
if __name__ == '__main__':

    end = time.time()

    time_meter = RunningAverageMeter(0.97)
    loss_meter = RunningAverageMeter(0.97)
    with tf.device(device):
        func = ODEFunc()
        lr = tf.Variable(args.lr)
        optimizer = tf.keras.optimizers.Adam(lr, clipvalue=0.5)

        for itr in range(1, args.niters + 1):
            with tf.GradientTape() as tape:
                batch_x0, batch_t, batch_x = get_batch()
                pred_x = odeint(func, batch_x0, batch_t,
                                method=args.method)  # (T, B, D)
                ex_loss = tf.reduce_sum(tf.math.square(pred_x - batch_x),
                                        axis=-1)
                loss = tf.reduce_mean(ex_loss)
                weights = [
                    v for v in func.trainable_variables if 'bias' not in v.name
                ]
                l2_loss = tf.add_n(
                    [tf.reduce_sum(tf.math.square(v)) for v in weights]) * 1e-5
                loss = loss + l2_loss

            nfe = func.nfe.numpy()
            func.nfe.assign(0.)
            grads = tape.gradient(loss, func.trainable_variables)
            nbe = func.nfe.numpy()
            func.nfe.assign(0.)
示例#26
0
def visualize(model,
              x_val,
              PLOT_DIR,
              TIME_OF_RUN,
              args,
              ode_model=True,
              latent=False,
              epoch=0):
    """Visualize a tf.keras.Model for a single pendulum.
    # Arguments:
        model: a Keras model
        x_val: np.ndarray, shape=(1, samples_per_series, 2) or (samples_per_series, 2)
                The reference time series, against which the model will be compared
        PLOT_DIR: dir to plot in
        TIME_OF_RUN: time of the run
        ode_model: whether the model outputs the derivative of the current step
        args: input arguments from main script
    """
    x_val = x_val.reshape(-1, 2)
    dt = 0.01
    t = tf.linspace(0., 10., int(10. / dt) + 1)
    # Compute the predicted trajectories
    if ode_model:
        x0 = tf.stack([[1.5, .5]])
        x_t = odeint(model, x0, t, rtol=1e-5, atol=1e-5).numpy()[:, 0]
    else:  # is LSTM
        x_t = np.zeros_like(x_val[0])
        x_t[0] = x_val[0]
        for i in range(1, len(t)):
            x_t[1:i + 1] = model(0., np.expand_dims(x_t, axis=0))[0, :i]

    fig = plt.figure(figsize=(12, 8), facecolor='white')
    ax_traj = fig.add_subplot(231, frameon=False)
    ax_phase = fig.add_subplot(232, frameon=False)
    ax_vecfield = fig.add_subplot(233, frameon=False)
    ax_vec_error_abs = fig.add_subplot(234, frameon=False)
    ax_vec_error_rel = fig.add_subplot(235, frameon=False)
    ax_energy = fig.add_subplot(236, frameon=False)
    ax_traj.cla()
    ax_traj.set_title('Trajectories')
    ax_traj.set_xlabel('t')
    ax_traj.set_ylabel('x,y')
    ax_traj.plot(t.numpy(), x_val[:, 0], t.numpy(), x_val[:, 1], 'g-')
    ax_traj.plot(t.numpy(), x_t[:, 0], '--', t.numpy(), x_t[:, 1], 'b--')
    ax_traj.set_xlim(min(t.numpy()), max(t.numpy()))
    ax_traj.set_ylim(-6, 6)
    ax_traj.legend()

    ax_phase.cla()
    ax_phase.set_title('Phase Portrait')
    ax_phase.set_xlabel('theta')
    ax_phase.set_ylabel('theta_dt')
    ax_phase.plot(x_val[:, 0], x_val[:, 1], 'g--')
    ax_phase.plot(x_t[:, 0], x_t[:, 1], 'b--')
    ax_phase.set_xlim(-6, 6)
    ax_phase.set_ylim(-6, 6)

    ax_vecfield.cla()
    ax_vecfield.set_title('Learned Vector Field')
    ax_vecfield.set_xlabel('theta')
    ax_vecfield.set_ylabel('theta_dt')

    steps = 61
    y, x = np.mgrid[-6:6:complex(0, steps), -6:6:complex(0, steps)]
    ref_func = Lambda()
    dydt_ref = ref_func(0.,
                        np.stack([x, y], -1).reshape(steps * steps,
                                                     2)).numpy()
    mag_ref = 1e-8 + np.linalg.norm(dydt_ref, axis=-1).reshape(steps, steps)
    dydt_ref = dydt_ref.reshape(steps, steps, 2)

    if ode_model:  # is Dense-Net or NODE-Net or NODE-e2e
        dydt = model(0.,
                     np.stack([x, y], -1).reshape(steps * steps, 2)).numpy()
    else:  # is LSTM
        # Compute artificial x_dot by numerically diffentiating:
        # x_dot \approx (x_{t+1}-x_t)/dt
        yt_1 = model(0.,
                     np.stack([x, y], -1).reshape(steps * steps, 1, 2))[:, 0]
        dydt = (np.array(yt_1) -
                np.stack([x, y], -1).reshape(steps * steps, 2)) / dt

    dydt_abs = dydt.reshape(steps, steps, 2)
    dydt_unit = dydt_abs / np.linalg.norm(dydt_abs, axis=-1, keepdims=True)

    ax_vecfield.streamplot(x,
                           y,
                           dydt_unit[:, :, 0],
                           dydt_unit[:, :, 1],
                           color="black")
    ax_vecfield.set_xlim(-6, 6)
    ax_vecfield.set_ylim(-6, 6)

    ax_vec_error_abs.cla()
    ax_vec_error_abs.set_title('Abs. error of thetadot')
    ax_vec_error_abs.set_xlabel('theta')
    ax_vec_error_abs.set_ylabel('theta_dt')

    abs_dif = np.clip(np.linalg.norm(dydt_abs - dydt_ref, axis=-1), 0., 3.)
    c1 = ax_vec_error_abs.contourf(x, y, abs_dif, 100)
    plt.colorbar(c1, ax=ax_vec_error_abs)

    ax_vec_error_abs.set_xlim(-6, 6)
    ax_vec_error_abs.set_ylim(-6, 6)

    ax_vec_error_rel.cla()
    ax_vec_error_rel.set_title('Rel. error of thetadot')
    ax_vec_error_rel.set_xlabel('theta')
    ax_vec_error_rel.set_ylabel('theta_dt')

    rel_dif = np.clip(abs_dif / mag_ref, 0., 1.)
    c2 = ax_vec_error_rel.contourf(x, y, rel_dif, 100)
    plt.colorbar(c2, ax=ax_vec_error_rel)

    ax_vec_error_rel.set_xlim(-6, 6)
    ax_vec_error_rel.set_ylim(-6, 6)

    ax_energy.cla()
    ax_energy.set_title('Total Energy')
    ax_energy.set_xlabel('t')
    ax_energy.plot(np.arange(0., x_t.shape[0] * dt, dt),
                   np.array([total_energy(x_) for x_ in x_t]))
    ax_energy.plot(np.arange(0., x_t.shape[0] * dt, dt), total_energy(x_t))

    fig.tight_layout()
    plt.savefig(PLOT_DIR + '/{:03d}'.format(epoch))
    plt.close()

    # Compute Metrics
    energy_drift_interp = relative_energy_drift(x_t, x_val)
    phase_error_interp = relative_phase_error(x_t, x_val)
    traj_err_interp = trajectory_error(x_t, x_val)

    wall_time = (datetime.datetime.now() - datetime.datetime.strptime(
        TIME_OF_RUN, "%Y%m%d-%H%M%S")).total_seconds()
    string = "{},{},{},{},{}\n".format(wall_time, epoch, energy_drift_interp,
                                       phase_error_interp, traj_err_interp)
    file_path = (PLOT_DIR + TIME_OF_RUN + "results" + str(args.lr) +
                 str(args.dataset_size) + str(args.batch_size) + ".csv")
    if not os.path.isfile(file_path):
        title_string = "wall_time,epoch,energy_interp,phase_interp,traj_err_interp\n"
        fd = open(file_path, 'a')
        fd.write(title_string)
        fd.close()
    fd = open(file_path, 'a')
    fd.write(string)
    fd.close()

    # Print Jacobian
    if ode_model:
        np.set_printoptions(suppress=True, precision=4, linewidth=150)
        # The first Jacobian is averaged over 100 randomly sampled points from U(-1, 1)
        jac = tf.zeros((2, 2))
        for i in range(100):
            with tf.GradientTape(persistent=True) as g:
                x = (2 * tf.random.uniform((1, 2)) - 1)
                g.watch(x)
                y = model(0, x)
            jac = jac + g.jacobian(y, x)[0, :, 0]
        print(jac.numpy() / 100)

        with tf.GradientTape(persistent=True) as g:
            x = tf.zeros([1, 2])
            g.watch(x)
            y = model(0, x)
        print(g.jacobian(y, x)[0, :, 0])

    if args.create_video:
        x1 = np.sin(x_t[:, 0])
        y1 = -np.cos(x_t[:, 0])

        fig = plt.figure()
        ax = fig.add_subplot(111,
                             autoscale_on=False,
                             xlim=(-2, 2),
                             ylim=(-2, 2))
        ax.set_aspect('equal')
        ax.grid()

        line, = ax.plot([], [], 'o-', lw=2)
        time_template = 'time = %.1fs'
        time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes)

        def animate(i):
            thisx = [0, x1[i]]
            thisy = [0, y1[i]]

            line.set_data(thisx, thisy)
            time_text.set_text(time_template % (i * 0.01))
            return line, time_text

        def init():
            line.set_data([], [])
            time_text.set_text('')
            return line, time_text

        ani = animation.FuncAnimation(fig,
                                      animate,
                                      range(1, len(x1)),
                                      interval=dt * len(x1),
                                      blit=True,
                                      init_func=init)
        Writer = animation.writers['ffmpeg']
        writer = Writer(fps=60, metadata=dict(artist='Me'), bitrate=2400)
        ani.save(PLOT_DIR + 'sp{}.mp4'.format(epoch), writer=writer)

        x1 = np.sin(x_val[:, 0])
        y1 = -np.cos(x_val[:, 0])

        fig = plt.figure()
        ax = fig.add_subplot(111,
                             autoscale_on=False,
                             xlim=(-2, 2),
                             ylim=(-2, 2))
        ax.set_aspect('equal')
        ax.grid()

        line, = ax.plot([], [], 'o-', lw=2)
        time_template = 'time = %.1fs'
        time_text = ax.text(0.05, 0.9, '', transform=ax.transAxes)

        ani = animation.FuncAnimation(fig,
                                      animate,
                                      range(1, len(x_t)),
                                      interval=dt * len(x_t),
                                      blit=True,
                                      init_func=init)
        Writer = animation.writers['ffmpeg']
        writer = Writer(fps=60, metadata=dict(artist='Me'), bitrate=2400)
        ani.save(PLOT_DIR + 'sp_ref.mp4', writer=writer)
        plt.close()
示例#27
0
def OdeintAdjointMethod(*args):
    global _arguments
    # args = _arguments.args
    # kwargs = _arguments.kwargs
    func = _arguments.func
    method = _arguments.method
    options = _arguments.options
    rtol = _arguments.rtol
    atol = _arguments.atol

    y0, t = args[:-1], args[-1]

    # registers `t` as a Variable that needs a grad, then resets it to a Tensor
    # for the `odeint` function to work. This is done to force tf to allow us to
    # pass the gradient of t as output.
    # t = tf.get_variable('t', initializer=t)
    # t = tf.convert_to_tensor(t, dtype=t.dtype)

    ans = odeint(func,
                 y0,
                 t,
                 rtol=rtol,
                 atol=atol,
                 method=method,
                 options=options)

    def grad(*grad_output, variables=None):
        global _arguments
        flat_params = _flatten(variables)

        func = _arguments.func
        method = _arguments.method
        options = _arguments.options
        rtol = _arguments.rtol
        atol = _arguments.atol

        n_tensors = len(ans)
        f_params = tuple(variables)

        # TODO: use a tf.keras.Model and call odeint_adjoint to implement higher order derivatives.
        def augmented_dynamics(t, y_aug):
            # Dynamics of the original system augmented with
            # the adjoint wrt y, and an integrator wrt t and args.

            y, adj_y = y_aug[:n_tensors], y_aug[
                n_tensors:2 * n_tensors]  # Ignore adj_time and adj_params.

            with tf.GradientTape() as tape:
                tape.watch(t)
                tape.watch(y)
                func_eval = func(t, y)
                func_eval = tf.convert_to_tensor(func_eval)

            gradys = -tf.stack(adj_y)
            if len(gradys.shape) < len(func_eval.shape):
                gradys = tf.expand_dims(gradys, axis=0)
            vjp_t, *vjp_y_and_params = tape.gradient(
                func_eval, (t, ) + y + f_params,
                output_gradients=gradys,
                unconnected_gradients=tf.UnconnectedGradients.ZERO)

            vjp_y = vjp_y_and_params[:n_tensors]
            vjp_params = vjp_y_and_params[n_tensors:]
            vjp_params = _flatten(vjp_params)

            if _check_len(f_params) == 0:
                vjp_params = tf.convert_to_tensor(0., dtype=vjp_y[0].dype)
                vjp_params = move_to_device(vjp_params, vjp_y[0].device)

            return (*func_eval, *vjp_y, vjp_t, vjp_params)

        T = ans[0].shape[0]
        if isinstance(grad_output, (tf.Tensor, tf.Variable)):
            adj_y = [grad_output[-1]]
        else:
            adj_y = tuple(grad_output_[-1] for grad_output_ in grad_output)

        adj_params = tf.zeros_like(flat_params, dtype=flat_params.dtype)
        adj_time = move_to_device(tf.convert_to_tensor(0., dtype=t.dtype),
                                  t.device)
        time_vjps = []
        if hasattr(func, 'base_func') and hasattr(func.base_func, 'nfe'):
            nfe = func.base_func.nfe.numpy()
        for i in range(T - 1, 0, -1):

            ans_i = tuple(ans_[i] for ans_ in ans)

            if isinstance(grad_output, (tf.Tensor, tf.Variable)):
                grad_output_i = [grad_output[i]]
            else:
                grad_output_i = tuple(grad_output_[i]
                                      for grad_output_ in grad_output)

            func_i = func(t[i], ans_i)

            if not isinstance(func_i, Iterable):
                func_i = [func_i]

            # Compute the effect of moving the current time measurement point.
            dLd_cur_t = sum(
                tf.reshape(
                    tf.matmul(tf.reshape(func_i_, [1, -1]),
                              tf.reshape(grad_output_i_, [-1, 1])), [1])
                for func_i_, grad_output_i_ in zip(func_i, grad_output_i))

            adj_time = adj_time - dLd_cur_t
            time_vjps.append(dLd_cur_t)

            # Run the augmented system backwards in time.
            if isinstance(adj_params, Iterable):
                if _numel(adj_params) == 0:
                    adj_params = move_to_device(
                        tf.convert_to_tensor(0., dtype=adj_y[0].dtype),
                        adj_y[0].device)

            aug_y0 = (*ans_i, *adj_y, adj_time, adj_params)

            aug_ans = odeint(augmented_dynamics,
                             aug_y0,
                             tf.convert_to_tensor([t[i], t[i - 1]]),
                             rtol=rtol,
                             atol=atol,
                             method=method,
                             options=options)

            # Unpack aug_ans.
            adj_y = aug_ans[n_tensors:2 * n_tensors]
            adj_time = aug_ans[2 * n_tensors]
            adj_params = aug_ans[2 * n_tensors + 1]

            adj_y = tuple(adj_y_[1] if _check_len(adj_y_) > 0 else adj_y_
                          for adj_y_ in adj_y)
            if _check_len(adj_time) > 0: adj_time = adj_time[1]
            if _check_len(adj_params) > 0: adj_params = adj_params[1]

            adj_y = tuple(adj_y_ + grad_output_[i - 1]
                          for adj_y_, grad_output_ in zip(adj_y, grad_output))

            del aug_y0, aug_ans

        if hasattr(func, 'base_func') and hasattr(func.base_func, 'nfe'):
            nbe = func.base_func.nfe.numpy() - nfe
            func.base_func.nfe.assign(nfe)
            func.base_func.nbe.assign(nbe)

        time_vjps.append(adj_time)
        time_vjps = tf.concat(time_vjps[::-1], 0)

        # reshape the parameters back into the correct variable shapes
        var_flat_lens = [_numel(v, dtype=tf.int32).numpy() for v in variables]
        var_shapes = [v.shape for v in variables]

        adj_params_splits = tf.split(adj_params, var_flat_lens)
        adj_params_list = [
            tf.reshape(p, v_shape)
            for p, v_shape in zip(adj_params_splits, var_shapes)
        ]
        return (*adj_y, time_vjps), adj_params_list

    return ans, grad
示例#28
0
        dz_dt = y[0] * y[1] - self.beta * y[2]

        dL_dt = tf.stack([dx_dt, dy_dt, dz_dt])
        return dL_dt


t = tf.range(0.0, 100.0, 0.01, dtype=tf.float64)
initial_state = tf.convert_to_tensor([1., 1., 1.], dtype=tf.float64)

sigma = 10.
beta = 8. / 3.
rho = 28.

with tf.device(device):
    t1 = time.time()
    solution = odeint(Lorenz(sigma, beta, rho), initial_state, t).numpy()
    t2 = time.time()

print("Finished integrating ! Result shape :", solution.shape)
print("Time required (s): ", t2 - t1)

from mpl_toolkits.mplot3d import Axes3D  # needed for plotting in 3d
_ = Axes3D

fig = plt.figure(figsize=(16, 16))
ax = fig.gca(projection='3d')
ax.set_title('Lorenz Attractor')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
ax.plot(solution[:, 0], solution[:, 1], solution[:, 2])
示例#29
0
                        samp_ts = states['samp_ts']
                        print('Loaded ckpt from {}'.format(path))

        for itr in range(1, args.niters + 1):
            # backward in time to infer q(z_0)
            with tf.GradientTape() as tape:
                h = rec.initHidden()
                for t in reversed(range(samp_trajs.shape[1])):
                    obs = samp_trajs[:, t, :]
                    out, h = rec(obs, h)
                qz0_mean, qz0_logvar = out[:, :latent_dim], out[:, latent_dim:]
                epsilon = tf.convert_to_tensor(np.random.randn(*qz0_mean.shape.as_list()), dtype=qz0_mean.dtype)
                z0 = epsilon * tf.exp(.5 * qz0_logvar) + qz0_mean

                # forward in time and solve ode for reconstructions
                pred_z = tf.transpose(odeint(func, z0, samp_ts), [1, 0, 2])
                pred_x = dec(pred_z)

                # compute loss
                noise_std_ = tf.zeros(pred_x.shape, dtype=tf.float64) + noise_std
                noise_logvar = 2. * tf.log(noise_std_)
                logpx = tf.reduce_sum(log_normal_pdf(
                    samp_trajs, pred_x, noise_logvar), axis=-1)
                logpx = tf.reduce_sum(logpx, axis=-1)
                pz0_mean = pz0_logvar = tf.zeros(z0.shape, dtype=tf.float64)
                analytic_kl = tf.reduce_sum(normal_kl(qz0_mean, qz0_logvar,
                                                      pz0_mean, pz0_logvar), axis=-1)
                loss = tf.reduce_mean(-logpx + analytic_kl, axis=0)

            params = (list(func.variables) + list(dec.variables) + list(rec.variables))
            grad = tape.gradient(loss, params)
device = 'gpu:' + str(args.gpu) if tf.test.is_gpu_available() else 'cpu:0'

true_y0 = tf.convert_to_tensor([[0.5, 0.01]], dtype=tf.float64)
t = tf.linspace(0., 25., args.data_size)
true_A = tf.convert_to_tensor([[-0.1, 3.0], [-3.0, -0.1]], dtype=tf.float64)


class Lambda(tf.keras.Model):
    def call(self, t, y):
        return tf.matmul(y, true_A)


with tf.device(device):
    t1 = time.time()
    true_y = odeint(Lambda(), true_y0, t, method=args.method)
    t2 = time.time()
print(true_y)
print()
print("Time taken to compute solution : ", t2 - t1)


def get_batch():
    s = np.random.choice(np.arange(args.data_size - args.batch_time,
                                   dtype=np.int64),
                         args.batch_size,
                         replace=False)

    temp_y = true_y.numpy()
    batch_y0 = tf.convert_to_tensor(temp_y[s])  # (M, D)
    batch_t = t[:args.batch_time]  # (T)