def __init__(self, model, filter_length, sample_rate, framesize, frameshift, usehamming, preemcoef, numchans, ceplifter, numceps, enormalise, zmeansource, usepower, usec0, usecmn, usedelta, useacc, n_last_frames, n_prev_frames, lofreq, hifreq, mel_banks_only): self.audio_recorded_in = [] self.ffnn = TheanoFFNN() self.ffnn.load(model) self.log_probs_speech = deque(maxlen=filter_length) self.log_probs_sil = deque(maxlen=filter_length) self.last_decision = 0.0 self.front_end = MFCCFrontEnd(sample_rate, framesize, usehamming, preemcoef, numchans, ceplifter, numceps, enormalise, zmeansource, usepower, usec0, usecmn, usedelta, useacc, n_last_frames + n_prev_frames, lofreq, hifreq, mel_banks_only) self.samplerate = sample_rate self.framesize = framesize self.frameshift = frameshift
def __init__(self, cfg): self.cfg = cfg self.audio_recorded_in = [] self.ffnn = TheanoFFNN() self.ffnn.load(self.cfg['model']) self.log_probs_speech = deque(maxlen=self.cfg['filter_length']) self.log_probs_sil = deque(maxlen=self.cfg['filter_length']) self.last_decision = 0.0 if self.cfg['frontend'] == 'MFCC': self.front_end = MFCCFrontEnd( self.cfg['sample_rate'], self.cfg['framesize'], self.cfg['usehamming'], self.cfg['preemcoef'], self.cfg['numchans'], self.cfg['ceplifter'], self.cfg['numceps'], self.cfg['enormalise'], self.cfg['zmeansource'], self.cfg['usepower'], self.cfg['usec0'], self.cfg['usecmn'], self.cfg['usedelta'], self.cfg['useacc'], self.cfg['n_last_frames'] + self.cfg['n_prev_frames'], self.cfg['lofreq'], self.cfg['hifreq'], self.cfg['mel_banks_only']) else: raise ASRException('Unsupported frontend: %s' % (self.cfg['frontend'], ))