示例#1
0
def self(x_train, y_train, x_test, y_test):
    int_put = input_data(shape=[None, 224, 5, 5, 1], )

    conv1 = conv_3d(
        int_put,
        24,
        [24, 3, 3],
        padding='VALID',
        strides=[1, 1, 1, 1, 1],
        activation='prelu',
    )
    print('conv1', conv1.get_shape().as_list())
    batch_norm = batch_normalization(conv1)

    conv2 = conv_3d(
        batch_norm,
        12,
        [24, 3, 3],
        padding='VALID',
        strides=[1, 1, 1, 1, 1],
        activation='prelu',
    )
    print('conv2', conv2.get_shape().as_list())
    batch_norm_con = batch_normalization(conv2)

    decon2 = conv_3d_transpose(batch_norm_con,
                               24, [24, 3, 3],
                               padding='VALID',
                               output_shape=[201, 3, 3, 24])
    batch_norm = batch_normalization(decon2)
    print('a')
    decon2 = conv_3d_transpose(batch_norm,
                               1, [24, 3, 3],
                               padding='VALID',
                               output_shape=[224, 5, 5, 1])
    batch_norm = batch_normalization(decon2)

    network = regression(batch_norm,
                         optimizer='Adagrad',
                         loss='mean_square',
                         learning_rate=0.01,
                         metric='R2')

    feature_model = tflearn.DNN(network)
    feature_model.load('my_model_self.tflearn')
    x_feature = feature_model.predict(x_train)
    save_hdf5(x_feature)
    print('asd')
示例#2
0
def conv_transpose_layer(input, n_filters, stride, output_shape):
    return conv.conv_3d_transpose(input,
                                  n_filters,
                                  3,
                                  output_shape=output_shape,
                                  strides=stride,
                                  padding='same',
                                  activation='elu',
                                  bias_init='zeros',
                                  scope=None,
                                  name='Conv3D')
示例#3
0
def up_block(input_tensor, concat, reuse, scope, init):
    n_channels = int(input_tensor.get_shape()[-1])
    x = conv_3d_transpose(input_tensor,
                          n_channels,
                          filter_size=2,
                          strides=2,
                          output_shape=[concat.get_shape().as_list()[1]] * 3,
                          activation='linear',
                          padding='same',
                          weights_init=init,
                          scope=scope + "_1",
                          reuse=reuse)
    # x = tflearn.layers.normalization.batch_normalization(x, reuse=reuse, scope=scope + "bn")
    x_out = tflearn.activation(x, "prelu")
    return x_out
示例#4
0
def arch_fusionnet_translator_3d_iso_tflearn(img,
                                             feats=[None, None, None],
                                             last_dim=1,
                                             nl=INLReLU3D,
                                             nb_filters=32):

    # Add decorator to tflearn source code
    # sudo nano /usr/local/lib/python2.7/dist-packages/tflearn/layers/conv.py
    # @tf.contrib.framework.add_arg_scope
    with tf.contrib.framework.arg_scope([conv_3d],
                                        filter_size=4,
                                        strides=[1, 2, 2, 2, 1],
                                        activation='leaky_relu'):
        with tf.contrib.framework.arg_scope([conv_3d_transpose],
                                            filter_size=4,
                                            strides=[1, 2, 2, 2, 1],
                                            activation='leaky_relu'):
            shape = img.get_shape().as_list()
            dimb, dimz, dimy, dimx, dimc = shape
            e1a = conv_3d(incoming=img,
                          name="e1a",
                          nb_filter=nb_filters * 1,
                          bias=False)
            r1a = tf_bottleneck(e1a, name="r1a", nb_filter=nb_filters * 1)
            r1a = tf.nn.dropout(r1a, keep_prob=0.5)

            e2a = conv_3d(incoming=r1a,
                          name="e2a",
                          nb_filter=nb_filters * 1,
                          bias=False)
            r2a = tf_bottleneck(e2a, name="r2a", nb_filter=nb_filters * 1)
            r2a = tf.nn.dropout(r2a, keep_prob=0.5)

            e3a = conv_3d(incoming=r2a,
                          name="e3a",
                          nb_filter=nb_filters * 2,
                          bias=False)
            r3a = tf_bottleneck(e3a, name="r3a", nb_filter=nb_filters * 2)
            r3a = tf.nn.dropout(r3a, keep_prob=0.5)

            e4a = conv_3d(incoming=r3a,
                          name="e4a",
                          nb_filter=nb_filters * 2,
                          bias=False)
            r4a = tf_bottleneck(e4a, name="r4a", nb_filter=nb_filters * 2)
            r4a = tf.nn.dropout(r4a, keep_prob=0.5)

            e5a = conv_3d(incoming=r4a,
                          name="e5a",
                          nb_filter=nb_filters * 4,
                          bias=False)
            r5a = tf_bottleneck(e5a, name="r5a", nb_filter=nb_filters * 4)
            r5a = tf.nn.dropout(r5a, keep_prob=0.5)

            # e6a  = conv_3d(incoming=r5a,           name="e6a", nb_filter=nb_filters*4, bias=False)
            # r6a  = tf_bottleneck(e6a,              name="r6a", nb_filter=nb_filters*4)

            # e7a  = conv_3d(incoming=r6a,           name="e7a", nb_filter=nb_filters*8)           , bias=False
            # r7a  = tf_bottleneck(e7a,              name="r7a", nb_filter=nb_filters*8)
            # r7a  = dropout(incoming=r7a, keep_prob=0.5)
            print "In1 :", img.get_shape().as_list()
            print "E1a :", e1a.get_shape().as_list()
            print "R1a :", r1a.get_shape().as_list()
            print "E2a :", e2a.get_shape().as_list()
            print "R2a :", r2a.get_shape().as_list()
            print "E3a :", e3a.get_shape().as_list()
            print "R3a :", r3a.get_shape().as_list()
            print "E4a :", e4a.get_shape().as_list()
            print "R4a :", r4a.get_shape().as_list()
            print "E5a :", e5a.get_shape().as_list()
            print "R5a :", r5a.get_shape().as_list()

            r5b = tf_bottleneck(r5a, name="r5b", nb_filter=nb_filters * 4)
            d4b = conv_3d_transpose(incoming=r5b,
                                    name="d4b",
                                    nb_filter=nb_filters * 2,
                                    output_shape=[
                                        -(-dimz // (2**4)), -(-dimy // (2**4)),
                                        -(-dimx / (2**4))
                                    ],
                                    bias=False)
            a4b = tf.add(d4b, r4a, name="a4b")

            r4b = tf_bottleneck(a4b, name="r4b", nb_filter=nb_filters * 2)
            d3b = conv_3d_transpose(incoming=r4b,
                                    name="d3b",
                                    nb_filter=nb_filters * 2,
                                    output_shape=[
                                        -(-dimz // (2**3)), -(-dimy // (2**3)),
                                        -(-dimx / (2**3))
                                    ],
                                    bias=False)
            a3b = tf.add(d3b, r3a, name="a3b")

            r3b = tf_bottleneck(a3b, name="r3b", nb_filter=nb_filters * 2)
            d2b = conv_3d_transpose(incoming=r3b,
                                    name="d2b",
                                    nb_filter=nb_filters * 1,
                                    output_shape=[
                                        -(-dimz // (2**2)), -(-dimy // (2**2)),
                                        -(-dimx / (2**2))
                                    ],
                                    bias=False)
            a2b = tf.add(d2b, r2a, name="a2b")

            r2b = tf_bottleneck(a2b, name="r2b", nb_filter=nb_filters * 1)
            d1b = conv_3d_transpose(incoming=r2b,
                                    name="d1b",
                                    nb_filter=nb_filters * 1,
                                    output_shape=[
                                        -(-dimz // (2**1)), -(-dimy // (2**1)),
                                        -(-dimx / (2**1))
                                    ],
                                    bias=False)
            a1b = tf.add(d1b, r1a, name="a1b")

            out = conv_3d_transpose(incoming=a1b,
                                    name="out",
                                    nb_filter=last_dim,
                                    activation='tanh',
                                    output_shape=[
                                        -(-dimz // (2**0)), -(-dimy // (2**0)),
                                        -(-dimx / (2**0))
                                    ])

            # print "R7b :", r7b.get_shape().as_list()
            # print "D6b :", d6b.get_shape().as_list()
            # print "A6b :", a6b.get_shape().as_list()

            # print "R6b :", r6b.get_shape().as_list()
            # print "D5b :", d5b.get_shape().as_list()
            # print "A5b :", a5b.get_shape().as_list()

            print "R5b :", r5b.get_shape().as_list()
            print "D4b :", d4b.get_shape().as_list()
            print "A4b :", a4b.get_shape().as_list()

            print "R4b :", r4b.get_shape().as_list()
            print "D3b :", d3b.get_shape().as_list()
            print "A3b :", a3b.get_shape().as_list()

            print "R3b :", r3b.get_shape().as_list()
            print "D2b :", d2b.get_shape().as_list()
            print "A2b :", a2b.get_shape().as_list()

            print "R2b :", r2b.get_shape().as_list()
            print "D1b :", d1b.get_shape().as_list()
            print "A1b :", a1b.get_shape().as_list()

            print "Out :", out.get_shape().as_list()

            return out
示例#5
0
def train(X=None,
          gpu_id=0,
          sparsity=False,
          latent=64,
          num_filters=32,
          filter_size=5,
          sparsity_level=DEFAULT_SPARSITY_LEVEL,
          sparsity_weight=DEFAULT_SPARSITY_WEIGHT,
          epochs=10,
          conv=False,
          checkpoint=None,
          is_training=True):
    assert checkpoint is not None or X is not None,\
        'Either data to train on or model to restore is required.'
    print(' * [INFO] Using GPU %s' % gpu_id)
    print(' * [INFO]', 'Using' if sparsity else 'Not using', 'sparsity')
    print(' * [INFO] Latent dimensions: %d' % latent)
    print(' * [INFO]', 'Using' if conv else 'Not using',
          'convolutional layers.')
    with tf.device(None if gpu_id is None else '/gpu:%s' % gpu_id):
        # Building the encoder
        if conv:
            encoder = tflearn.input_data(shape=[None, 30, 30, 30, 1])
            encoder = conv_3d(encoder,
                              num_filters,
                              filter_size,
                              activation=tf.nn.sigmoid)
            encoder = tflearn.fully_connected(encoder,
                                              latent,
                                              activation=tf.nn.sigmoid)
        else:
            encoder = tflearn.input_data(shape=[None, 27000])
            encoder = tflearn.fully_connected(encoder,
                                              256,
                                              activation=tf.nn.relu)
            encoder = tflearn.fully_connected(encoder,
                                              64,
                                              activation=tf.nn.relu)
            encoder = tflearn.fully_connected(encoder,
                                              latent,
                                              activation=tf.nn.relu)

        if sparsity:
            avg_activations = tf.reduce_mean(encoder, axis=1)
            div = tf.reduce_mean(kl_divergence(avg_activations,
                                               sparsity_level))

        # Building the decoder
        if conv:
            decoder = tflearn.fully_connected(encoder, (30**3) * num_filters,
                                              activation=tf.nn.sigmoid)
            decoder = tflearn.reshape(decoder, [-1, 30, 30, 30, num_filters])
            decoder = conv_3d_transpose(decoder,
                                        1,
                                        filter_size, [30, 30, 30],
                                        activation=tf.nn.sigmoid)
        else:
            decoder = tflearn.fully_connected(encoder,
                                              64,
                                              activation=tf.nn.relu)
            decoder = tflearn.fully_connected(decoder,
                                              256,
                                              activation=tf.nn.relu)
            decoder = tflearn.fully_connected(decoder,
                                              27000,
                                              activation=tf.nn.relu)

    def sparsity_loss(y_pred, y_true):
        return tf.reduce_mean(tf.square(y_pred - y_true)) + \
               sparsity_weight * div

    # Regression, with mean square error
    net = tflearn.regression(decoder,
                             optimizer='adam',
                             learning_rate=1e-4,
                             loss=sparsity_loss if sparsity else 'mean_square',
                             metric=None)

    # Training the auto encoder
    model = tflearn.DNN(net, tensorboard_verbose=0)
    encoding_model = tflearn.DNN(encoder, session=model.session)
    saver = tf.train.Saver()
    checkpoint_path = CKPT_FORMAT.format(id=checkpoint or ID_)

    if is_training:
        model.fit(X, X, n_epoch=epochs, run_id="auto_encoder", batch_size=256)
        saver.save(encoding_model.session, checkpoint_path)
    else:
        saver.restore(encoding_model.models, checkpoint_path)

    return {'model': model, 'encoding_model': encoding_model}
示例#6
0
def generator_fusionnet(images, name='generator'):
	dimx = DIMX
	dimy = DIMY
	dimz = DIMZ

	with tf.variable_scope(name):
		# return images
		e1 = conv_3d(incoming=images, 
					 nb_filter=NB_FILTERS*1, 
					 filter_size=4,
					 strides=[1, 1, 1, 1, 1], # DIMZ/1, DIMY/2, DIMX/2, 
					 regularizer='L1',
					 activation='elu')
		e1 = batch_normalization(incoming=e1)
		###
		e2 = conv_3d(incoming=e1, 
					 nb_filter=NB_FILTERS*1, 
					 filter_size=4,
					 strides=[1, 2, 2, 2, 1], # DIMZ/2, DIMY/4, DIMX/4, 
					 regularizer='L1',
					 activation='elu')
		
		e2 = batch_normalization(incoming=e2)
		###
		e3 = conv_3d(incoming=e2, 
					 nb_filter=NB_FILTERS*2, 
					 filter_size=4,
					 strides=[1, 2, 2, 2, 1], # DIMZ/4, DIMY/8, DIMX/8,
					 regularizer='L1',
					 activation='elu')
		e3 = batch_normalization(incoming=e3)
		###
		e4 = conv_3d(incoming=e3, 
					 nb_filter=NB_FILTERS*2, 
					 filter_size=4,
					 strides=[1, 2, 2, 2, 1], # DIMZ/8, DIMY/16, DIMX/16,
					 regularizer='L1',
					 activation='elu')
		e4 = batch_normalization(incoming=e4)
		###
		e5 = conv_3d(incoming=e4, 
					 nb_filter=NB_FILTERS*4, 
					 filter_size=4,
					 strides=[1, 2, 2, 2, 1], # DIMZ/16, DIMY/32, DIMX/32,
					 regularizer='L1',
					 activation='elu')
		e5 = batch_normalization(incoming=e5)		
		###
		e6 = conv_3d(incoming=e5, 
					 nb_filter=NB_FILTERS*4, 
					 filter_size=4,
					 strides=[1, 2, 2, 2, 1], # DIMZ/32, DIMY/64, DIMX/64,
					 regularizer='L1',
					 activation='elu')
		e6 = batch_normalization(incoming=e6)		
		###
		e7 = conv_3d(incoming=e6, 
					 nb_filter=NB_FILTERS*8, 
					 filter_size=4,
					 strides=[1, 2, 2, 2, 1], # DIMZ/64, DIMY/128, DIMX/128,
					 regularizer='L1',
					 activation='elu')
		e7 = batch_normalization(incoming=e7)		
		### Middle
		e8 = conv_3d(incoming=e7, 
					 nb_filter=NB_FILTERS*8, 
					 filter_size=4,
					 strides=[1, 2, 2, 2, 1], # DIMZ/128, DIMY/256, DIMX/256,
					 regularizer='L1',
					 activation='elu')
		# print "Dim8: ", dimz, dimy, dimx
		dimz, dimy, dimx = dimz/2, dimy/2, dimx/2
		e8 = batch_normalization(incoming=e8)		

		################### Decoder

		# print "Dim D7a: ", dimz, dimy, dimx
		d7 = conv_3d_transpose(incoming=e8, 
							   nb_filter=NB_FILTERS*8, 
							   filter_size=4,
							   strides=[1, 2, 2, 2, 1], # DIMZ/64, DIMY/128, DIMX/128,
							   regularizer='L1',
							   activation='elu', 
							   output_shape=[2, 4, 4])

		d7 = batch_normalization(incoming=d7)
		
		d7 = dropout(incoming=d7, keep_prob=0.5)
		
		d7 = merge(tensors_list=[d7, e7], mode='elemwise_sum')
		# d7 = d7+e7	
		###
		d6 = conv_3d_transpose(incoming=d7, 
							   nb_filter=NB_FILTERS*4, 
							   filter_size=4,
							   strides=[1, 2, 2, 2, 1], # DIMZ/32, DIMY/64, DIMX/64,
							   regularizer='L1',
							   activation='elu', 
							   output_shape=[4, 8, 8])
		d6 = batch_normalization(incoming=d6)	
		d6 = dropout(incoming=d6, keep_prob=0.5)
		
		d6 = merge(tensors_list=[d6, e6], mode='elemwise_sum')
		# d6 = d6+e6
		###
		d5 = conv_3d_transpose(incoming=d6, 
							   nb_filter=NB_FILTERS*4, 
							   filter_size=4,
							   strides=[1, 2, 2, 2, 1], # DIMZ/16, DIMY/32, DIMX/32,
							   regularizer='L1',
							   activation='elu', 
							   output_shape=[8, 16, 16])
		d5 = batch_normalization(incoming=d5)	
		d5 = dropout(incoming=d5, keep_prob=0.5)
		
		d5 = merge(tensors_list=[d5, e5], mode='elemwise_sum')
		# d5 = d5+e5
		###
		d4 = conv_3d_transpose(incoming=d5, 
							   nb_filter=NB_FILTERS*2, 
							   filter_size=4,
							   strides=[1, 2, 2, 2, 1], # DIMZ/8, DIMY/16, DIMX/16,
							   regularizer='L1',
							   activation='elu', 
							   output_shape=[16, 32, 32])
		d4 = batch_normalization(incoming=d4)	
		
		d4 = merge(tensors_list=[d4, e4], mode='elemwise_sum')
		# d4 = d4+e4
		###
		d3 = conv_3d_transpose(incoming=d4, 
							   nb_filter=NB_FILTERS*2, 
							   filter_size=4,
							   strides=[1, 2, 2, 2, 1], # DIMZ/4, DIMY/8, DIMX/8,
							   regularizer='L1',
							   activation='elu', 
							   output_shape=[32, 64, 64])
		d3 = batch_normalization(incoming=d3)	
		
		d3 = merge(tensors_list=[d3, e3], mode='elemwise_sum')
		# d3 = d3+e3
		###
		d2 = conv_3d_transpose(incoming=d3, 
							   nb_filter=NB_FILTERS*1, 
							   filter_size=4,
							   strides=[1, 2, 2, 2, 1], # DIMZ/2, DIMY/4, DIMX/4,
							   regularizer='L1',
							   activation='elu', 
							   output_shape=[64, 128, 128])
		d2 = batch_normalization(incoming=d2)	
		
		d2 = merge(tensors_list=[d2, e2], mode='elemwise_sum')
		# d2 = d2+e2
		
		###
		d1 = conv_3d_transpose(incoming=d2, 
							   nb_filter=NB_FILTERS*1, 
							   filter_size=4,
							   strides=[1, 2, 2, 2, 1], # DIMZ/1, DIMY/2, DIMX/2,
							   regularizer='L1',
							   activation='elu', 
							   output_shape=[128, 256, 256])
		d1 = batch_normalization(incoming=d1)	
		
		d1 = merge(tensors_list=[d1, e1], mode='elemwise_sum')
		# d1 = d1+e1
		###
		
		out = conv_3d_transpose(incoming=d1, 
							   nb_filter=1, 
							   filter_size=4,
							   strides=[1, 1, 1, 1, 1], # DIMZ/1, DIMY/1, DIMX/1,
							   regularizer='L1',
							   activation='tanh', 
							   output_shape=[128, 256, 256])
		return out, e8
	def vol3d_decoder(self, x, name='Vol3D_Decoder'):
		with argscope([Conv3DTranspose], kernel_shape=4, padding='SAME', nl=tf.nn.elu):
			# x = x - VGG19_MEAN_TENSOR 
			# x = BNLReLU(x)
			x = tf_2tanh(x)
			# x = x/255.0
			x = tf.space_to_batch(x, paddings=[[0,0],[0,0]], block_size=64 ,name='s2b')
			x = tf.reshape(x, [-1, 4, 4, 4, 3]) 
			x = tf.transpose(x, [4, 1, 2, 3, 0]) # #
			
			"""
			x = (LinearWrap(x)
				.Conv3DTranspose('conv6a', 256, strides = 2, padding='SAME') #
				.Conv3DTranspose('conv5a', 128, strides = 2, padding='SAME') #
				.Conv3DTranspose('conv4a',  64, strides = 2, padding='SAME') #
				.Conv3DTranspose('conv3a',  32, strides = 2, padding='SAME') #
				.Conv3DTranspose('conv2a',  16, strides = 2, padding='SAME') #
				.Conv3DTranspose('conv1a',   1, strides = 2, padding='SAME', use_bias=True, nl=tf.tanh) #
				()) 
			"""
			with tf.contrib.framework.arg_scope([conv_3d], filter_size=4, strides=[1, 2, 2, 2, 1], activation='relu', reuse=False):
				with tf.contrib.framework.arg_scope([conv_3d_transpose], filter_size=4, strides=[1, 2, 2, 2, 1], activation='relu', reuse=False):
					d6b  = conv_3d_transpose(incoming=x  , name="d6b", nb_filter=256, output_shape=[int(s) for s in [-(-DIMZ//(2**5)), -(-DIMY//(2**5)), -(-DIMX/(2**5))]], bias=False)
					r6b  = tf_bottleneck(d6b,              name="r6b", nb_filter=256)

					# Decoder
					d5b  = conv_3d_transpose(incoming=r6b, name="d5b", nb_filter=128, output_shape=[int(s) for s in [-(-DIMZ//(2**4)), -(-DIMY//(2**4)), -(-DIMX//(2**4))]], bias=False)
					r5b  = tf_bottleneck(d5b,              name="r5b", nb_filter=128)
					
					d4b  = conv_3d_transpose(incoming=r5b, name="d4b", nb_filter=64, output_shape=[int(s) for s in [-(-DIMZ//(2**3)), -(-DIMY//(2**3)), -(-DIMX//(2**3))]], bias=False)
					r4b  = tf_bottleneck(d4b,              name="r4b", nb_filter=64)
					

					d3b  = conv_3d_transpose(incoming=r4b, name="d3b", nb_filter=32, output_shape=[int(s) for s in [-(-DIMZ//(2**2)), -(-DIMY//(2**2)), -(-DIMX//(2**2))]], bias=False)
					r3b  = tf_bottleneck(d3b,              name="r3b", nb_filter=32)
					
					d2b  = conv_3d_transpose(incoming=r3b, name="d1b", nb_filter=16, output_shape=[int(s) for s in [-(-DIMZ//(2**1)), -(-DIMY//(2**1)), -(-DIMX//(2**1))]], bias=False)
					r2b  = tf_bottleneck(d2b,              name="r2b", nb_filter=16)

					out  = conv_3d_transpose(incoming=r2b, name="out", nb_filter=1,
											activation='tanh', 
											output_shape=[int(s) for s in [-(-DIMZ//(2**0)), -(-DIMY//(2**0)), -(-DIMX//(2**0))]])
				  
					print("D6b :", d6b.get_shape().as_list())
					print("R6b :", r6b.get_shape().as_list())
					
					print("D5b :", d5b.get_shape().as_list())
					print("R5b :", r5b.get_shape().as_list())
					
					print("D4b :", d4b.get_shape().as_list())
					print("R4b :", r4b.get_shape().as_list())
					
					print("D3b :", d3b.get_shape().as_list())
					print("R3b :", r3b.get_shape().as_list())
					
					print("D2b :", d2b.get_shape().as_list())
					print("R2b :", r2b.get_shape().as_list())
					

					print("Out :", out.get_shape().as_list())

					x = out

			x = tf.transpose(x, [4, 1, 2, 3, 0]) # 
			x = tf.squeeze(x)
			# x = x*255.0
			x = tf_2imag(x)
			# x = x + VGG19_MEAN_TENSOR
			return x
示例#8
0
def self(x_train, y_train, x_test, y_test):
    int_put = input_data(shape=[None, 224, 5, 5, 1], )

    conv1 = conv_3d(
        int_put,
        24,
        [24, 3, 3],
        padding='VALID',
        strides=[1, 1, 1, 1, 1],
        activation='prelu',
    )
    print('conv1', conv1.get_shape().as_list())
    batch_norm = batch_normalization(conv1)

    conv2 = conv_3d(
        batch_norm,
        12,
        [24, 3, 3],
        padding='VALID',
        strides=[1, 1, 1, 1, 1],
        activation='prelu',
    )
    print('conv2', conv2.get_shape().as_list())
    batch_norm_con = batch_normalization(conv2)

    decon2 = conv_3d_transpose(batch_norm_con,
                               24, [24, 3, 3],
                               padding='VALID',
                               output_shape=[201, 3, 3, 24])
    batch_norm = batch_normalization(decon2)
    print('a')
    decon2 = conv_3d_transpose(batch_norm,
                               1, [24, 3, 3],
                               padding='VALID',
                               output_shape=[224, 5, 5, 1])
    batch_norm = batch_normalization(decon2)

    network = regression(batch_norm,
                         optimizer='Adagrad',
                         loss='mean_square',
                         learning_rate=0.01,
                         metric='R2')
    model = tflearn.DNN(network,
                        tensorboard_verbose=0,
                        tensorboard_dir="./tflearn_logs/")

    for i in range(10):
        model.fit(x_train,
                  x_train,
                  n_epoch=20,
                  shuffle=True,
                  show_metric=True,
                  validation_set=(x_test, x_test),
                  batch_size=32,
                  run_id='3d_net_self')
        x_pre = model.predict(x_train)
        x_pre = np.array(x_pre)
        x_true = np.array(x_train)
        psnr(x_true, x_pre)

    model.save('my_model_self.tflearn')
    '''