def decode(self, latent_input): return apply_tf_op(inputs=latent_input, session=self.sess, input_gate=self.latent_ph, output_gate=self.dec_output_ph, batch_size=self.args.nbatch, train_gate=self.istrain)
def custom_apply_tf_op(inputs, output_gate): return apply_tf_op(inputs=inputs, session=self.sess, input_gate=self.img, output_gate=output_gate, batch_size=self.args.nbatch, dim=4, train_gate=self.istrain)
def custom_apply_tf_op(inputs, output_gate): return apply_tf_op(inputs=inputs, session=self.sess, input_gate=self.img, output_gate=output_gate, batch_size=self.args.nbatch, dim=4, train_gate=self.istrain) self.val_embed = custom_apply_tf_op(inputs=self.val_image, output_gate=self.embed_l2_norm)