示例#1
0
                # save the variables
                var_dict = get_variables_as_dict(model_vs)
                saver = VariableSaver(var_dict, config.save_dir)
                saver.save()
            print('=' * 30 + 'result' + '=' * 30)
            pprint(best_valid_metrics)


if __name__ == '__main__':

    # get config obj
    config = ExpConfig()

    # parse the arguments
    arg_parser = ArgumentParser()
    register_config_arguments(config, arg_parser)
    arg_parser.parse_args(sys.argv[1:])
    config.x_dim = get_data_dim(config.dataset)

    print_with_title('Configurations', pformat(config.to_dict()), after='\n')

    # open the result object and prepare for result directories if specified
    results = MLResults(config.result_dir)
    results.save_config(config)  # save experiment settings for review
    results.make_dirs(config.save_dir, exist_ok=True)
    with warnings.catch_warnings():
        # suppress DeprecationWarning from NumPy caused by codes in TensorFlow-Probability
        warnings.filterwarnings("ignore",
                                category=DeprecationWarning,
                                module='numpy')
        main()
示例#2
0
def main():
    config = ExpConfig_transfer()

    # parse the arguments
    arg_parser = ArgumentParser()
    register_config_arguments(config, arg_parser)
    arg_parser.parse_args(sys.argv[1:])
    executable_action_list = (config.executable_action.replace(" ",
                                                               "")).split(',')
    dataset = [str(i) for i in range(533)]

    if '1' in executable_action_list:
        train_part1(
            dataset,
            start_time=datetime_to_timestamp(config.train_start_time),
            last_time=datetime_to_timestamp(config.train_last_time),
            action1_model_dir=config.action1_model_dir,
            action1_result_dir=config.action1_result_dir,
            action1_GPU_device_number=config.action1_GPU_device_number,
            action1_sample_ratio=config.action1_sample_ratio,
            action1_machine_sample_ratio=config.action1_machine_sample_ratio)
    if '2' in executable_action_list:
        get_all_machines_z(
            dataset,
            start_time=datetime_to_timestamp(config.train_z_start_time),
            last_time=datetime_to_timestamp(config.train_z_last_time),
            action1_model_dir=config.action1_model_dir,
            action1_result_dir=config.action1_result_dir,
            action2_run_parallel_number=config.action2_run_parallel_number)
    if '3' in executable_action_list:
        train_part2(
            dataset,
            action1_result_dir=config.action1_result_dir,
            action3_z_file_dir=config.action3_z_file_dir,
            action3_z_distance_matrix_name=config.
            action3_z_distance_matrix_name,
            action3_cluster_number=config.action3_cluster_number,
            action3_cluster_png_filename=config.action3_cluster_png_filename,
            action3_cluster_result_filename=config.
            action3_cluster_result_filename,
            action3_machine_file_name=config.action3_machine_file_name)
    if '4' in executable_action_list:
        train_part3(
            dataset,
            start_time=datetime_to_timestamp(config.train_start_time),
            last_time=datetime_to_timestamp(config.train_last_time),
            action3_z_file_dir=config.action3_z_file_dir,
            action3_cluster_result_filename=config.
            action3_cluster_result_filename,
            action3_machine_file_name=config.action3_machine_file_name,
            action4_run_parallel_number=config.action4_run_parallel_number,
            action4_model_dir_prefix=config.action4_model_dir_prefix,
            action4_result_dir_prefix=config.action4_result_dir_prefix,
            action1_model_dir=config.action1_model_dir,
            action4_cluster_max_machine=config.action4_cluster_max_machine)
    if '5' in executable_action_list:
        if config.test_start_timestamp is None:
            _test_start_timestamp = datetime_to_timestamp(
                config.test_start_time)
            _test_last_timestamp = datetime_to_timestamp(config.test_last_time)
        else:
            _test_start_timestamp = config.test_start_timestamp
            _test_last_timestamp = config.test_last_timestamp

        train_part4(
            dataset,
            historical_start_time=datetime_to_timestamp(
                config.train_z_start_time),
            historical_last_time=datetime_to_timestamp(
                config.train_z_last_time),
            start_time=_test_start_timestamp,
            last_time=_test_last_timestamp,
            action3_z_file_dir=config.action3_z_file_dir,
            action3_cluster_result_filename=config.
            action3_cluster_result_filename,
            action3_machine_file_name=config.action3_machine_file_name,
            action5_run_parallel_number=config.action5_run_parallel_number,
            action4_model_dir_prefix=config.action4_model_dir_prefix,
            action4_save_path=config.action4_save_path,
            action4_result_dir_prefix=config.action4_result_dir_prefix,
            get_historical_data_info_flag=config.
            action5_get_historical_data_info_flag,
            get_threshold_flag=config.action5_get_threshold_flag)