示例#1
0
 def setUp(self):
     super(PlaceholderUtilsTest, self).setUp()
     examples = [standard_artifacts.Examples()]
     examples[0].uri = "/tmp"
     examples[0].split_names = artifact_utils.encode_split_names(
         ["train", "eval"])
     self._serving_spec = infra_validator_pb2.ServingSpec()
     self._serving_spec.tensorflow_serving.tags.extend(
         ["latest", "1.15.0-gpu"])
     self._resolution_context = placeholder_utils.ResolutionContext(
         exec_info=data_types.ExecutionInfo(
             input_dict={
                 "model": [standard_artifacts.Model()],
                 "examples": examples,
             },
             output_dict={"blessing": [standard_artifacts.ModelBlessing()]},
             exec_properties={
                 "proto_property":
                 json_format.MessageToJson(message=self._serving_spec,
                                           sort_keys=True,
                                           preserving_proto_field_name=True,
                                           indent=0)
             },
             execution_output_uri="test_executor_output_uri",
             stateful_working_dir="test_stateful_working_dir",
             pipeline_node=pipeline_pb2.PipelineNode(
                 node_info=pipeline_pb2.NodeInfo(
                     type=metadata_store_pb2.ExecutionType(
                         name="infra_validator"))),
             pipeline_info=pipeline_pb2.PipelineInfo(
                 id="test_pipeline_id")),
         executor_spec=executable_spec_pb2.PythonClassExecutableSpec(
             class_path="test_class_path"),
     )
     # Resolution context to simulate missing optional values.
     self._none_resolution_context = placeholder_utils.ResolutionContext(
         exec_info=data_types.ExecutionInfo(
             input_dict={
                 "model": [],
                 "examples": [],
             },
             output_dict={"blessing": []},
             exec_properties={},
             pipeline_node=pipeline_pb2.PipelineNode(
                 node_info=pipeline_pb2.NodeInfo(
                     type=metadata_store_pb2.ExecutionType(
                         name="infra_validator"))),
             pipeline_info=pipeline_pb2.PipelineInfo(
                 id="test_pipeline_id")),
         executor_spec=None,
         platform_config=None)
 def _set_up_test_execution_info(self,
                                 input_dict=None,
                                 output_dict=None,
                                 exec_properties=None):
   return data_types.ExecutionInfo(
       input_dict=input_dict or {},
       output_dict=output_dict or {},
       exec_properties=exec_properties or {},
       execution_output_uri='/testing/executor/output/',
       stateful_working_dir='/testing/stateful/dir',
       pipeline_node=pipeline_pb2.PipelineNode(
           node_info=pipeline_pb2.NodeInfo(
               type=metadata_store_pb2.ExecutionType(name='Docker_executor'))),
       pipeline_info=pipeline_pb2.PipelineInfo(id='test_pipeline_id'))
示例#3
0
 def _set_up_test_execution_info(self,
                                 input_dict=None,
                                 output_dict=None,
                                 exec_properties=None):
     return data_types.ExecutionInfo(
         execution_id=123,
         input_dict=input_dict or {},
         output_dict=output_dict or {},
         exec_properties=exec_properties or {},
         execution_output_uri='/testing/executor/output/',
         stateful_working_dir='/testing/stateful/dir',
         pipeline_node=pipeline_pb2.PipelineNode(
             node_info=pipeline_pb2.NodeInfo(
                 id='fakecomponent-fakecomponent')),
         pipeline_info=pipeline_pb2.PipelineInfo(id='Test'),
         pipeline_run_id='123')