def run_as_kubernetes_job(pipeline: tfx_pipeline.Pipeline, tfx_image: Text) -> None: """Submits and runs a TFX pipeline from outside the cluster. Args: pipeline: Logical pipeline containing pipeline args and components. tfx_image: Container image URI for the TFX container. Raises: RuntimeError: When an error is encountered running the Kubernetes Job. """ # TODO(ccy): Look for alternative serialization schemes once available. serialized_pipeline = _serialize_pipeline(pipeline) arguments = [ '--serialized_pipeline', serialized_pipeline, '--tfx_image', tfx_image, ] batch_api = kube_utils.make_batch_v1_api() job_name = 'Job_' + pipeline.pipeline_info.run_id pod_label = kube_utils.sanitize_pod_name(job_name) container_name = 'pipeline-orchestrator' job = kube_utils.make_job_object( name=job_name, container_image=tfx_image, command=_ORCHESTRATOR_COMMAND + arguments, container_name=container_name, pod_labels={ 'job-name': pod_label, }, service_account_name=kube_utils.TFX_SERVICE_ACCOUNT, ) try: batch_api.create_namespaced_job('default', job, pretty=True) except client.rest.ApiException as e: raise RuntimeError('Failed to submit job! \nReason: %s\nBody: %s' % (e.reason, e.body)) # Wait for pod to start. orchestrator_pods = [] core_api = kube_utils.make_core_v1_api() start_time = datetime.datetime.utcnow() # Wait for the kubernetes job to launch a pod. while not orchestrator_pods and (datetime.datetime.utcnow() - start_time ).seconds < JOB_CREATION_TIMEOUT: try: orchestrator_pods = core_api.list_namespaced_pod( namespace='default', label_selector='job-name={}'.format(pod_label)).items except client.rest.ApiException as e: if e.status != 404: raise RuntimeError('Unknown error! \nReason: %s\nBody: %s' % (e.reason, e.body)) time.sleep(1) # Transient orchestrator should only have 1 pod. if len(orchestrator_pods) != 1: raise RuntimeError( 'Expected 1 pod launched by Kubernetes job, found %d' % len(orchestrator_pods)) orchestrator_pod = orchestrator_pods.pop() pod_name = orchestrator_pod.metadata.name absl.logging.info('Waiting for pod "default:%s" to start.', pod_name) kube_utils.wait_pod(core_api, pod_name, 'default', exit_condition_lambda=kube_utils.pod_is_not_pending, condition_description='non-pending status') # Stream logs from orchestrator pod. absl.logging.info('Start log streaming for pod "default:%s".', pod_name) try: logs = core_api.read_namespaced_pod_log( name=pod_name, namespace='default', container=container_name, follow=True, _preload_content=False).stream() except client.rest.ApiException as e: raise RuntimeError( 'Failed to stream the logs from the pod!\nReason: %s\nBody: %s' % (e.reason, e.body)) for log in logs: absl.logging.info(log.decode().rstrip('\n')) resp = kube_utils.wait_pod(core_api, pod_name, 'default', exit_condition_lambda=kube_utils.pod_is_done, condition_description='done state', exponential_backoff=True) if resp.status.phase == kube_utils.PodPhase.FAILED.value: raise RuntimeError('Pod "default:%s" failed with status "%s".' % (pod_name, resp.status))
def _run_executor(self, execution_id: int, input_dict: Dict[Text, List[types.Artifact]], output_dict: Dict[Text, List[types.Artifact]], exec_properties: Dict[Text, Any]) -> None: """Execute underlying component implementation. Runs executor container in a Kubernetes Pod and wait until it goes into `Succeeded` or `Failed` state. Args: execution_id: The ID of the execution. input_dict: Input dict from input key to a list of Artifacts. These are often outputs of another component in the pipeline and passed to the component by the orchestration system. output_dict: Output dict from output key to a list of Artifacts. These are often consumed by a dependent component. exec_properties: A dict of execution properties. These are inputs to pipeline with primitive types (int, string, float) and fully materialized when a pipeline is constructed. No dependency to other component or later injection from orchestration systems is necessary or possible on these values. Raises: RuntimeError: when the pod is in `Failed` state or unexpected failure from Kubernetes API. """ container_spec = cast(executor_spec.ExecutorContainerSpec, self._component_executor_spec) # Replace container spec with jinja2 template. container_spec = container_common.resolve_container_template( container_spec, input_dict, output_dict, exec_properties) pod_name = self._build_pod_name(execution_id) # TODO(hongyes): replace the default value from component config. try: namespace = kube_utils.get_kfp_namespace() except RuntimeError: namespace = 'kubeflow' pod_manifest = self._build_pod_manifest(pod_name, container_spec) core_api = kube_utils.make_core_v1_api() if kube_utils.is_inside_kfp(): launcher_pod = kube_utils.get_current_kfp_pod(core_api) pod_manifest['spec']['serviceAccount'] = launcher_pod.spec.service_account pod_manifest['spec'][ 'serviceAccountName'] = launcher_pod.spec.service_account_name pod_manifest['metadata'][ 'ownerReferences'] = container_common.to_swagger_dict( launcher_pod.metadata.owner_references) else: pod_manifest['spec']['serviceAccount'] = kube_utils.TFX_SERVICE_ACCOUNT pod_manifest['spec'][ 'serviceAccountName'] = kube_utils.TFX_SERVICE_ACCOUNT logging.info('Looking for pod "%s:%s".', namespace, pod_name) resp = kube_utils.get_pod(core_api, pod_name, namespace) if not resp: logging.info('Pod "%s:%s" does not exist. Creating it...', namespace, pod_name) logging.info('Pod manifest: %s', pod_manifest) try: resp = core_api.create_namespaced_pod( namespace=namespace, body=pod_manifest) except client.rest.ApiException as e: raise RuntimeError( 'Failed to created container executor pod!\nReason: %s\nBody: %s' % (e.reason, e.body)) # Wait up to 300 seconds for the pod to move from pending to another status. logging.info('Waiting for pod "%s:%s" to start.', namespace, pod_name) kube_utils.wait_pod( core_api, pod_name, namespace, exit_condition_lambda=kube_utils.pod_is_not_pending, condition_description='non-pending status', timeout_sec=300) logging.info('Start log streaming for pod "%s:%s".', namespace, pod_name) try: logs = core_api.read_namespaced_pod_log( name=pod_name, namespace=namespace, container=kube_utils.ARGO_MAIN_CONTAINER_NAME, follow=True, _preload_content=False).stream() except client.rest.ApiException as e: raise RuntimeError( 'Failed to stream the logs from the pod!\nReason: %s\nBody: %s' % (e.reason, e.body)) for log in logs: logging.info(log.decode().rstrip('\n')) # Wait indefinitely for the pod to complete. resp = kube_utils.wait_pod( core_api, pod_name, namespace, exit_condition_lambda=kube_utils.pod_is_done, condition_description='done state') if resp.status.phase == kube_utils.PodPhase.FAILED.value: raise RuntimeError('Pod "%s:%s" failed with status "%s".' % (namespace, pod_name, resp.status)) logging.info('Pod "%s:%s" is done.', namespace, pod_name)
def run_executor( self, execution_info: data_types.ExecutionInfo ) -> execution_result_pb2.ExecutorOutput: """Execute underlying component implementation. Runs executor container in a Kubernetes Pod and wait until it goes into `Succeeded` or `Failed` state. Args: execution_info: All the information that the launcher provides. Raises: RuntimeError: when the pod is in `Failed` state or unexpected failure from Kubernetes API. Returns: An ExecutorOutput instance """ context = placeholder_utils.ResolutionContext( exec_info=execution_info, executor_spec=self._executor_spec, platform_config=self._platform_config) container_spec = executor_specs.TemplatedExecutorContainerSpec( image=self._container_executor_spec.image, command=[ placeholder_utils.resolve_placeholder_expression(cmd, context) for cmd in self._container_executor_spec.commands ] or None, args=[ placeholder_utils.resolve_placeholder_expression(arg, context) for arg in self._container_executor_spec.args ] or None, ) pod_name = self._build_pod_name(execution_info) # TODO(hongyes): replace the default value from component config. try: namespace = kube_utils.get_kfp_namespace() except RuntimeError: namespace = 'kubeflow' pod_manifest = self._build_pod_manifest(pod_name, container_spec) core_api = kube_utils.make_core_v1_api() if kube_utils.is_inside_kfp(): launcher_pod = kube_utils.get_current_kfp_pod(core_api) pod_manifest['spec'][ 'serviceAccount'] = launcher_pod.spec.service_account pod_manifest['spec'][ 'serviceAccountName'] = launcher_pod.spec.service_account_name pod_manifest['metadata'][ 'ownerReferences'] = container_common.to_swagger_dict( launcher_pod.metadata.owner_references) else: pod_manifest['spec'][ 'serviceAccount'] = kube_utils.TFX_SERVICE_ACCOUNT pod_manifest['spec'][ 'serviceAccountName'] = kube_utils.TFX_SERVICE_ACCOUNT logging.info('Looking for pod "%s:%s".', namespace, pod_name) resp = kube_utils.get_pod(core_api, pod_name, namespace) if not resp: logging.info('Pod "%s:%s" does not exist. Creating it...', namespace, pod_name) logging.info('Pod manifest: %s', pod_manifest) try: resp = core_api.create_namespaced_pod(namespace=namespace, body=pod_manifest) except client.rest.ApiException as e: raise RuntimeError( 'Failed to created container executor pod!\nReason: %s\nBody: %s' % (e.reason, e.body)) # Wait up to 300 seconds for the pod to move from pending to another status. logging.info('Waiting for pod "%s:%s" to start.', namespace, pod_name) kube_utils.wait_pod( core_api, pod_name, namespace, exit_condition_lambda=kube_utils.pod_is_not_pending, condition_description='non-pending status', timeout_sec=300) logging.info('Start log streaming for pod "%s:%s".', namespace, pod_name) try: logs = core_api.read_namespaced_pod_log( name=pod_name, namespace=namespace, container=kube_utils.ARGO_MAIN_CONTAINER_NAME, follow=True, _preload_content=False).stream() except client.rest.ApiException as e: raise RuntimeError( 'Failed to stream the logs from the pod!\nReason: %s\nBody: %s' % (e.reason, e.body)) for log in logs: logging.info(log.decode().rstrip('\n')) # Wait indefinitely for the pod to complete. resp = kube_utils.wait_pod( core_api, pod_name, namespace, exit_condition_lambda=kube_utils.pod_is_done, condition_description='done state') if resp.status.phase == kube_utils.PodPhase.FAILED.value: raise RuntimeError('Pod "%s:%s" failed with status "%s".' % (namespace, pod_name, resp.status)) logging.info('Pod "%s:%s" is done.', namespace, pod_name) return execution_result_pb2.ExecutorOutput()