def _generate_blessing_result(self, eval_examples_uri: Text, slice_spec: List[ tfma.slicer.SingleSliceSpec], current_model_dir: Text, blessed_model_dir: Text) -> bool: current_model_eval_result_path = os.path.join( self._temp_path, constants.CURRENT_MODEL_EVAL_RESULT_PATH) blessed_model_eval_result_path = os.path.join( self._temp_path, constants.BLESSED_MODEL_EVAL_RESULT_PATH) with self._make_beam_pipeline() as pipeline: eval_data = (pipeline | 'ReadData' >> beam.io.ReadFromTFRecord( file_pattern=io_utils.all_files_pattern(eval_examples_uri))) current_model = tfma.default_eval_shared_model( eval_saved_model_path=path_utils.eval_model_path( current_model_dir)) (eval_data | 'EvalCurrentModel' >> tfma.ExtractEvaluateAndWriteResults( # pylint: disable=expression-not-assigned eval_shared_model=current_model, slice_spec=slice_spec, output_path=current_model_eval_result_path)) if blessed_model_dir is not None: blessed_model = tfma.default_eval_shared_model( eval_saved_model_path=path_utils.eval_model_path( blessed_model_dir)) (eval_data | 'EvalBlessedModel' >> tfma.ExtractEvaluateAndWriteResults( # pylint: disable=expression-not-assigned eval_shared_model=blessed_model, slice_spec=slice_spec, output_path=blessed_model_eval_result_path)) absl.logging.info( 'all files in current_model_eval_result_path: [%s]', str(tf.io.gfile.listdir(current_model_eval_result_path))) current_model_eval_result = tfma.load_eval_result( output_path=current_model_eval_result_path) if not self._pass_threshold(current_model_eval_result): absl.logging.info('Current model does not pass threshold.') return False absl.logging.info('Current model passes threshold.') if blessed_model_dir is None: absl.logging.info('No blessed model yet.') return True absl.logging.info( 'all files in blessed_model_eval_result: [%s]', str(tf.io.gfile.listdir(blessed_model_eval_result_path))) blessed_model_eval_result = tfma.load_eval_result( output_path=blessed_model_eval_result_path) if (self._compare_eval_result(current_model_eval_result, blessed_model_eval_result)): absl.logging.info('Current model better than blessed model.') return True else: absl.logging.info('Current model worse than blessed model.') return False
def _generate_blessing_result(self, eval_examples_uri, slice_spec, current_model_dir, blessed_model_dir): current_model_eval_result_path = os.path.join( self._temp_path, CURRENT_MODEL_EVAL_RESULT_PATH) blessed_model_eval_result_path = os.path.join( self._temp_path, BLESSED_MODEL_EVAL_RESULT_PATH) with beam.Pipeline(argv=self._get_beam_pipeline_args()) as pipeline: eval_data = (pipeline | 'ReadData' >> beam.io.ReadFromTFRecord( file_pattern=io_utils.all_files_pattern(eval_examples_uri))) current_model = tfma.default_eval_shared_model( eval_saved_model_path=path_utils.eval_model_path( current_model_dir)) (eval_data | 'EvalCurrentModel' >> tfma.ExtractEvaluateAndWriteResults( # pylint: disable=expression-not-assigned eval_shared_model=current_model, slice_spec=slice_spec, output_path=current_model_eval_result_path)) if blessed_model_dir is not None: blessed_model = tfma.default_eval_shared_model( eval_saved_model_path=path_utils.eval_model_path( blessed_model_dir)) (eval_data | 'EvalBlessedModel' >> tfma.ExtractEvaluateAndWriteResults( # pylint: disable=expression-not-assigned eval_shared_model=blessed_model, slice_spec=slice_spec, output_path=blessed_model_eval_result_path)) current_model_eval_result = tfma.load_eval_result( output_path=current_model_eval_result_path) if not self._pass_threshold(current_model_eval_result): tf.logging.info('Current model does not pass threshold.') return False tf.logging.info('Current model passes threshold.') if blessed_model_dir is None: tf.logging.info('No blessed model yet.') return True blessed_model_eval_result = tfma.load_eval_result( output_path=blessed_model_eval_result_path) if (self._compare_eval_result(current_model_eval_result, blessed_model_eval_result)): tf.logging.info('Current model better than blessed model.') return True else: tf.logging.info('Current model worse than blessed model.') return False
def Do(self, input_dict: Dict[Text, List[types.Artifact]], output_dict: Dict[Text, List[types.Artifact]], exec_properties: Dict[Text, Any]) -> None: """Runs a batch job to evaluate the eval_model against the given input. Args: input_dict: Input dict from input key to a list of Artifacts. - model_exports: exported model. - examples: examples for eval the model. output_dict: Output dict from output key to a list of Artifacts. - output: model evaluation results. exec_properties: A dict of execution properties. - feature_slicing_spec: JSON string of evaluator_pb2.FeatureSlicingSpec instance, providing the way to slice the data. Returns: None """ if 'model_exports' not in input_dict: raise ValueError('\'model_exports\' is missing in input dict.') if 'examples' not in input_dict: raise ValueError('\'examples\' is missing in input dict.') if 'output' not in output_dict: raise ValueError('\'output\' is missing in output dict.') self._log_startup(input_dict, output_dict, exec_properties) # Extract input artifacts model_exports_uri = artifact_utils.get_single_uri( input_dict['model_exports']) feature_slicing_spec = evaluator_pb2.FeatureSlicingSpec() json_format.Parse(exec_properties['feature_slicing_spec'], feature_slicing_spec) slice_spec = self._get_slice_spec_from_feature_slicing_spec( feature_slicing_spec) output_uri = artifact_utils.get_single_uri(output_dict['output']) eval_model_path = path_utils.eval_model_path(model_exports_uri) tf.logging.info('Using {} for model eval.'.format(eval_model_path)) eval_shared_model = tfma.default_eval_shared_model( eval_saved_model_path=eval_model_path) tf.logging.info('Evaluating model.') with self._make_beam_pipeline() as pipeline: # pylint: disable=expression-not-assigned (pipeline | 'ReadData' >> beam.io.ReadFromTFRecord(file_pattern=io_utils.all_files_pattern( artifact_utils.get_split_uri(input_dict['examples'], 'eval'))) | 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults( eval_shared_model=eval_shared_model, slice_spec=slice_spec, output_path=output_uri)) tf.logging.info( 'Evaluation complete. Results written to {}.'.format(output_uri))
def Do(self, input_dict, output_dict, exec_properties): """Runs a batch job to evaluate the eval_model against the given input. Args: input_dict: Input dict from input key to a list of Artifacts. - model_exports: exported model. - examples: examples for eval the model. output_dict: Output dict from output key to a list of Artifacts. - output: model evaluation results. exec_properties: A dict of execution properties. - feature_slicing_spec: JSON string of evaluator_pb2.FeatureSlicingSpec instance, providing the way to slice the data. Returns: None """ if 'model_exports' not in input_dict: raise ValueError('\'model_exports\' is missing in input dict.') if 'examples' not in input_dict: raise ValueError('\'examples\' is missing in input dict.') if 'output' not in output_dict: raise ValueError('\'output\' is missing in output dict.') self._log_startup(input_dict, output_dict, exec_properties) # Extract input artifacts model_exports_uri = types.get_single_uri(input_dict['model_exports']) feature_slicing_spec = evaluator_pb2.FeatureSlicingSpec() json_format.Parse(exec_properties['feature_slicing_spec'], feature_slicing_spec) slice_spec = self._get_slice_spec_from_feature_slicing_spec( feature_slicing_spec) output_uri = types.get_single_uri(output_dict['output']) eval_model_path = path_utils.eval_model_path(model_exports_uri) tf.logging.info('Using {} for model eval.'.format(eval_model_path)) eval_shared_model = tfma.default_eval_shared_model( eval_saved_model_path=eval_model_path) tf.logging.info('Evaluating model.') with beam.Pipeline(argv=self._get_beam_pipeline_args()) as pipeline: # pylint: disable=expression-not-assigned (pipeline | 'ReadData' >> beam.io.ReadFromTFRecord( file_pattern=io_utils.all_files_pattern( types.get_split_uri(input_dict['examples'], 'eval'))) | 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults( eval_shared_model=eval_shared_model, slice_spec=slice_spec, output_path=output_uri)) tf.logging.info( 'Evaluation complete. Results written to {}.'.format(output_uri))
def testKerasModelPath(self): # Create folders based on Keras based Trainer output model directory. output_uri = os.path.join(self.get_temp_dir(), 'model_dir') serving_model_path = os.path.join(output_uri, 'serving_model_dir') tf.io.gfile.makedirs(serving_model_path) # Test retrieving model folder. self.assertEqual(serving_model_path, path_utils.eval_model_path(output_uri)) self.assertEqual(serving_model_path, path_utils.serving_model_path(output_uri))
def _get_eval_saved_model(artifact: List[types.Artifact], tags=None) -> tfma.EvalSharedModel: model_uri = artifact_utils.get_single_uri(artifact) if tags and tf.saved_model.SERVING in tags: model_path = path_utils.serving_model_path(model_uri) else: model_path = path_utils.eval_model_path(model_uri) return tfma.default_eval_shared_model( eval_saved_model_path=model_path, tags=tags, add_metrics_callbacks=add_metrics_callbacks)
def testKerasModelPath(self): # Create folders based on Keras based Trainer output model directory. output_uri = os.path.join(self.get_temp_dir(), 'model_dir') serving_model_path = path_utils.serving_model_dir(output_uri) serving_model = os.path.join(serving_model_path, 'saved_model.pb') io_utils.write_string_file(serving_model, 'testing') # Test retrieving model folder. self.assertEqual(serving_model_path, path_utils.eval_model_path(output_uri)) self.assertEqual(serving_model_path, path_utils.serving_model_path(output_uri))
def testEstimatorModelPath(self): # Create folders based on Estimator based Trainer output model directory. output_uri = os.path.join(self.get_temp_dir(), 'model_dir') eval_model_path = os.path.join(output_uri, 'eval_model_dir', '123') tf.io.gfile.makedirs(eval_model_path) serving_model_path = os.path.join(output_uri, 'serving_model_dir', 'export', 'taxi', '123') tf.io.gfile.makedirs(serving_model_path) # Test retrieving model folder. self.assertEqual(eval_model_path, path_utils.eval_model_path(output_uri)) self.assertEqual(serving_model_path, path_utils.serving_model_path(output_uri))
def testEstimatorModelPath(self, is_old_artifact): # Create folders based on Estimator based Trainer output model directory, # after Executor performs cleaning. output_uri = os.path.join(self.get_temp_dir(), 'model_dir') eval_model_path = path_utils.eval_model_dir(output_uri, is_old_artifact) eval_model = os.path.join(eval_model_path, 'saved_model.pb') io_utils.write_string_file(eval_model, 'testing') serving_model_path = path_utils.serving_model_dir( output_uri, is_old_artifact) serving_model = os.path.join(eval_model_path, 'saved_model.pb') io_utils.write_string_file(serving_model, 'testing') # Test retrieving model folder. self.assertEqual( eval_model_path, path_utils.eval_model_path(output_uri, is_old_artifact)) self.assertEqual( serving_model_path, path_utils.serving_model_path(output_uri, is_old_artifact)) self.assertEqual( eval_model_path, path_utils.get_model_dir_by_type(output_uri, path_constants.TFMA_EVAL, is_old_artifact)) self.assertEqual( serving_model_path, path_utils.get_model_dir_by_type(output_uri, path_constants.TF_KERAS, is_old_artifact)) self.assertEqual( serving_model_path, path_utils.get_model_dir_by_type(output_uri, path_constants.TF_GENERIC, is_old_artifact)) self.assertEqual( serving_model_path, path_utils.get_model_dir_by_type(output_uri, path_constants.TF_ESTIMATOR, is_old_artifact)) self.assertEqual( serving_model_path, path_utils.get_model_dir_by_type(output_uri, path_constants.TF_JS, is_old_artifact)) self.assertEqual( serving_model_path, path_utils.get_model_dir_by_type(output_uri, path_constants.TF_LITE, is_old_artifact))
def testEstimatorModelPath(self): # Create folders based on Estimator based Trainer output model directory, # after Executor performs cleaning. output_uri = os.path.join(self.get_temp_dir(), 'model_dir') eval_model_path = path_utils.eval_model_dir(output_uri) eval_model = os.path.join(eval_model_path, 'saved_model.pb') io_utils.write_string_file(eval_model, 'testing') serving_model_path = path_utils.serving_model_dir(output_uri) serving_model = os.path.join(eval_model_path, 'saved_model.pb') io_utils.write_string_file(serving_model, 'testing') # Test retrieving model folder. self.assertEqual(eval_model_path, path_utils.eval_model_path(output_uri)) self.assertEqual(serving_model_path, path_utils.serving_model_path(output_uri))
def run_fn(fn_args: executor.TrainerFnArgs): """Train the model based on given args. Args: fn_args: Holds args used to train the model as name/value pairs. """ schema = io_utils.parse_pbtxt_file(fn_args.schema_file, schema_pb2.Schema()) training_spec = _trainer_fn(fn_args, schema) # Train the model absl.logging.info('Training model.') tf.estimator.train_and_evaluate(training_spec['estimator'], training_spec['train_spec'], training_spec['eval_spec']) absl.logging.info('Training complete. Model written to %s', fn_args.serving_model_dir) # Export an eval savedmodel for TFMA # NOTE: When trained in distributed training cluster, eval_savedmodel must be # exported only by the chief worker (check TF_CONFIG). absl.logging.info('Exporting eval_savedmodel for TFMA.') eval_export_dir = path_utils.eval_model_dir(fn_args.model_run_dir) tfma.export.export_eval_savedmodel( estimator=training_spec['estimator'], export_dir_base=eval_export_dir, eval_input_receiver_fn=training_spec['eval_input_receiver_fn']) absl.logging.info('Exported eval_savedmodel to %s.', fn_args.eval_model_dir) # TODO(b/160795287): Deprecate estimator based executor. # Copy serving and eval model from model_run to model artifact directory. serving_source = path_utils.serving_model_path(fn_args.model_run_dir) io_utils.copy_dir(serving_source, fn_args.serving_model_dir) absl.logging.info('Serving model copied to: %s.', fn_args.serving_model_dir) eval_source = path_utils.eval_model_path(fn_args.model_run_dir) io_utils.copy_dir(eval_source, fn_args.eval_model_dir) absl.logging.info('Eval model copied to: %s.', fn_args.eval_model_dir)
def Do(self, input_dict: Dict[Text, List[types.Artifact]], output_dict: Dict[Text, List[types.Artifact]], exec_properties: Dict[Text, Any]) -> None: """Uses a user-supplied tf.estimator to train a TensorFlow model locally. The Trainer Executor invokes a training_fn callback function provided by the user via the module_file parameter. With the tf.estimator returned by this function, the Trainer Executor then builds a TensorFlow model using the user-provided tf.estimator. Args: input_dict: Input dict from input key to a list of ML-Metadata Artifacts. - examples: Examples used for training, must include 'train' and 'eval' splits. - transform_output: Optional input transform graph. - schema: Schema of the data. output_dict: Output dict from output key to a list of Artifacts. - model: Exported model. - model_run: Model training related outputs (e.g., Tensorboard logs) exec_properties: A dict of execution properties. - train_args: JSON string of trainer_pb2.TrainArgs instance, providing args for training. - eval_args: JSON string of trainer_pb2.EvalArgs instance, providing args for eval. - module_file: Python module file containing UDF model definition. - warm_starting: Whether or not we need to do warm starting. - warm_start_from: Optional. If warm_starting is True, this is the directory to find previous model to warm start on. - custom_config: Optional. JSON-serialized dict of additional parameters to pass to trainer function. Returns: None Raises: ValueError: When neither or both of 'module_file' and 'trainer_fn' are present in 'exec_properties'. """ self._log_startup(input_dict, output_dict, exec_properties) fn_args = self._GetFnArgs(input_dict, output_dict, exec_properties) trainer_fn = udf_utils.get_fn(exec_properties, 'trainer_fn') schema = io_utils.parse_pbtxt_file(fn_args.schema_file, schema_pb2.Schema()) # TODO(b/160795287): Deprecate estimator based executor. # Provide user with a modified fn_args, with model_run given as # the working directory. Executor will then copy user models to # model artifact directory. serving_dest = fn_args.serving_model_dir eval_dest = fn_args.eval_model_dir working_dir = fn_args.model_run_dir fn_args.serving_model_dir = path_utils.serving_model_dir(working_dir) fn_args.eval_model_dir = path_utils.eval_model_dir(working_dir) training_spec = trainer_fn(fn_args, schema) # Train the model absl.logging.info('Training model.') tf.estimator.train_and_evaluate(training_spec['estimator'], training_spec['train_spec'], training_spec['eval_spec']) absl.logging.info( 'Training complete. Model written to %s. ModelRun written to %s', fn_args.serving_model_dir, fn_args.model_run_dir) # Export an eval savedmodel for TFMA. If distributed training, it must only # be written by the chief worker, as would be done for serving savedmodel. if _is_chief(): absl.logging.info('Exporting eval_savedmodel for TFMA.') tfma.export.export_eval_savedmodel( estimator=training_spec['estimator'], export_dir_base=fn_args.eval_model_dir, eval_input_receiver_fn=training_spec['eval_input_receiver_fn']) absl.logging.info('Exported eval_savedmodel to %s.', fn_args.eval_model_dir) # TODO(b/160795287): Deprecate estimator based executor. # Copy serving and eval model from model_run to model artifact directory. serving_source = path_utils.serving_model_path(fn_args.model_run_dir) io_utils.copy_dir(serving_source, serving_dest) absl.logging.info('Serving model copied to: %s.', serving_dest) eval_source = path_utils.eval_model_path(fn_args.model_run_dir) io_utils.copy_dir(eval_source, eval_dest) absl.logging.info('Eval model copied to: %s.', eval_dest) else: absl.logging.info( 'Model export is skipped because this is not the chief worker.')
def Do(self, input_dict: Dict[Text, List[types.Artifact]], output_dict: Dict[Text, List[types.Artifact]], exec_properties: Dict[Text, Any]) -> None: """Runs a batch job to evaluate the eval_model against the given input. Args: input_dict: Input dict from input key to a list of Artifacts. - model_exports: exported model. - examples: examples for eval the model. output_dict: Output dict from output key to a list of Artifacts. - output: model evaluation results. exec_properties: A dict of execution properties. - feature_slicing_spec: JSON string of evaluator_pb2.FeatureSlicingSpec instance, providing the way to slice the data. Returns: None """ if 'model_exports' not in input_dict: raise ValueError('\'model_exports\' is missing in input dict.') if 'examples' not in input_dict: raise ValueError('\'examples\' is missing in input dict.') if 'output' not in output_dict: raise ValueError('\'output\' is missing in output dict.') self._log_startup(input_dict, output_dict, exec_properties) # Extract input artifacts model_exports_uri = artifact_utils.get_single_uri( input_dict['model_exports']) feature_slicing_spec = evaluator_pb2.FeatureSlicingSpec() json_format.Parse(exec_properties['feature_slicing_spec'], feature_slicing_spec) slice_spec = self._get_slice_spec_from_feature_slicing_spec( feature_slicing_spec) output_uri = artifact_utils.get_single_uri(output_dict['output']) eval_model_path = path_utils.eval_model_path(model_exports_uri) # Add fairness indicator metric callback if necessary. fairness_indicator_thresholds = exec_properties.get( 'fairness_indicator_thresholds', None) add_metrics_callbacks = None if fairness_indicator_thresholds: # Need to import the following module so that the fairness indicator # post-export metric is registered. import tensorflow_model_analysis.addons.fairness.post_export_metrics.fairness_indicators # pylint: disable=g-import-not-at-top, unused-variable add_metrics_callbacks = [ tfma.post_export_metrics.fairness_indicators( # pytype: disable=module-attr thresholds=fairness_indicator_thresholds), ] absl.logging.info('Using {} for model eval.'.format(eval_model_path)) eval_shared_model = tfma.default_eval_shared_model( eval_saved_model_path=eval_model_path, add_metrics_callbacks=add_metrics_callbacks) absl.logging.info('Evaluating model.') with self._make_beam_pipeline() as pipeline: # pylint: disable=expression-not-assigned (pipeline | 'ReadData' >> beam.io.ReadFromTFRecord( file_pattern=io_utils.all_files_pattern( artifact_utils.get_split_uri(input_dict['examples'], 'eval'))) | 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults( eval_shared_model=eval_shared_model, slice_spec=slice_spec, output_path=output_uri)) absl.logging.info( 'Evaluation complete. Results written to {}.'.format(output_uri))
def Do(self, input_dict: Dict[Text, List[types.Artifact]], output_dict: Dict[Text, List[types.Artifact]], exec_properties: Dict[Text, Any]) -> None: """Runs a batch job to evaluate the eval_model against the given input. Args: input_dict: Input dict from input key to a list of Artifacts. - model_exports: exported model. - examples: examples for eval the model. output_dict: Output dict from output key to a list of Artifacts. - output: model evaluation results. exec_properties: A dict of execution properties. - eval_config: JSON string of tfma.EvalConfig. - feature_slicing_spec: JSON string of evaluator_pb2.FeatureSlicingSpec instance, providing the way to slice the data. Deprecated, use eval_config.slicing_specs instead. Returns: None """ if constants.EXAMPLES_KEY not in input_dict: raise ValueError('EXAMPLES_KEY is missing from input dict.') if constants.MODEL_KEY not in input_dict: raise ValueError('MODEL_KEY is missing from input dict.') if constants.EVALUATION_KEY not in output_dict: raise ValueError('EVALUATION_KEY is missing from output dict.') if len(input_dict[constants.MODEL_KEY]) > 1: raise ValueError( 'There can be only one candidate model, there are {}.'.format( len(input_dict[constants.MODEL_KEY]))) if constants.BASELINE_MODEL_KEY in input_dict and len( input_dict[constants.BASELINE_MODEL_KEY]) > 1: raise ValueError( 'There can be only one baseline model, there are {}.'.format( len(input_dict[constants.BASELINE_MODEL_KEY]))) self._log_startup(input_dict, output_dict, exec_properties) # Add fairness indicator metric callback if necessary. fairness_indicator_thresholds = exec_properties.get( 'fairness_indicator_thresholds', None) add_metrics_callbacks = None if fairness_indicator_thresholds: # Need to import the following module so that the fairness indicator # post-export metric is registered. import tensorflow_model_analysis.addons.fairness.post_export_metrics.fairness_indicators # pylint: disable=g-import-not-at-top, unused-variable add_metrics_callbacks = [ tfma.post_export_metrics.fairness_indicators( # pytype: disable=module-attr thresholds=fairness_indicator_thresholds), ] output_uri = artifact_utils.get_single_uri( output_dict[constants.EVALUATION_KEY]) run_validation = False models = [] if 'eval_config' in exec_properties and exec_properties['eval_config']: slice_spec = None has_baseline = bool(input_dict.get(constants.BASELINE_MODEL_KEY)) eval_config = tfma.EvalConfig() json_format.Parse(exec_properties['eval_config'], eval_config) eval_config = tfma.update_eval_config_with_defaults( eval_config, maybe_add_baseline=has_baseline, maybe_remove_baseline=not has_baseline) tfma.verify_eval_config(eval_config) # Do not validate model when there is no thresholds configured. This is to # avoid accidentally blessing models when users forget to set thresholds. run_validation = bool( tfma.metrics.metric_thresholds_from_metrics_specs( eval_config.metrics_specs)) if len(eval_config.model_specs) > 2: raise ValueError( """Cannot support more than two models. There are {} models in this eval_config.""".format(len(eval_config.model_specs))) # Extract model artifacts. for model_spec in eval_config.model_specs: if model_spec.is_baseline: model_uri = artifact_utils.get_single_uri( input_dict[constants.BASELINE_MODEL_KEY]) else: model_uri = artifact_utils.get_single_uri( input_dict[constants.MODEL_KEY]) if tfma.get_model_type(model_spec) == tfma.TF_ESTIMATOR: model_path = path_utils.eval_model_path(model_uri) else: model_path = path_utils.serving_model_path(model_uri) absl.logging.info('Using {} as {} model.'.format( model_path, model_spec.name)) models.append( tfma.default_eval_shared_model( model_name=model_spec.name, eval_saved_model_path=model_path, add_metrics_callbacks=add_metrics_callbacks, eval_config=eval_config)) else: eval_config = None assert ('feature_slicing_spec' in exec_properties and exec_properties['feature_slicing_spec'] ), 'both eval_config and feature_slicing_spec are unset.' feature_slicing_spec = evaluator_pb2.FeatureSlicingSpec() json_format.Parse(exec_properties['feature_slicing_spec'], feature_slicing_spec) slice_spec = self._get_slice_spec_from_feature_slicing_spec( feature_slicing_spec) model_uri = artifact_utils.get_single_uri( input_dict[constants.MODEL_KEY]) model_path = path_utils.eval_model_path(model_uri) absl.logging.info('Using {} for model eval.'.format(model_path)) models.append( tfma.default_eval_shared_model( eval_saved_model_path=model_path, add_metrics_callbacks=add_metrics_callbacks)) file_pattern = io_utils.all_files_pattern( artifact_utils.get_split_uri(input_dict[constants.EXAMPLES_KEY], 'eval')) eval_shared_model = models[0] if len(models) == 1 else models schema = None if constants.SCHEMA_KEY in input_dict: schema = io_utils.SchemaReader().read( io_utils.get_only_uri_in_dir( artifact_utils.get_single_uri( input_dict[constants.SCHEMA_KEY]))) absl.logging.info('Evaluating model.') with self._make_beam_pipeline() as pipeline: # pylint: disable=expression-not-assigned if _USE_TFXIO: tensor_adapter_config = None if tfma.is_batched_input(eval_shared_model, eval_config): tfxio = tf_example_record.TFExampleRecord( file_pattern=file_pattern, schema=schema, raw_record_column_name=tfma.BATCHED_INPUT_KEY) if schema is not None: tensor_adapter_config = tensor_adapter.TensorAdapterConfig( arrow_schema=tfxio.ArrowSchema(), tensor_representations=tfxio.TensorRepresentations( )) data = pipeline | 'ReadFromTFRecordToArrow' >> tfxio.BeamSource( ) else: data = pipeline | 'ReadFromTFRecord' >> beam.io.ReadFromTFRecord( file_pattern=file_pattern) (data | 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults( eval_shared_model=models[0] if len(models) == 1 else models, eval_config=eval_config, output_path=output_uri, slice_spec=slice_spec, tensor_adapter_config=tensor_adapter_config)) else: data = pipeline | 'ReadFromTFRecord' >> beam.io.ReadFromTFRecord( file_pattern=file_pattern) (data | 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults( eval_shared_model=models[0] if len(models) == 1 else models, eval_config=eval_config, output_path=output_uri, slice_spec=slice_spec)) absl.logging.info( 'Evaluation complete. Results written to {}.'.format(output_uri)) if not run_validation: # TODO(jinhuang): delete the BLESSING_KEY from output_dict when supported. absl.logging.info( 'No threshold configured, will not validate model.') return # Set up blessing artifact blessing = artifact_utils.get_single_instance( output_dict[constants.BLESSING_KEY]) blessing.set_string_custom_property( constants.ARTIFACT_PROPERTY_CURRENT_MODEL_URI_KEY, artifact_utils.get_single_uri(input_dict[constants.MODEL_KEY])) blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_CURRENT_MODEL_ID_KEY, input_dict[constants.MODEL_KEY][0].id) if input_dict.get(constants.BASELINE_MODEL_KEY): baseline_model = input_dict[constants.BASELINE_MODEL_KEY][0] blessing.set_string_custom_property( constants.ARTIFACT_PROPERTY_BASELINE_MODEL_URI_KEY, baseline_model.uri) blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_BASELINE_MODEL_ID_KEY, baseline_model.id) if 'current_component_id' in exec_properties: blessing.set_string_custom_property( 'component_id', exec_properties['current_component_id']) # Check validation result and write BLESSED file accordingly. absl.logging.info('Checking validation results.') validation_result = tfma.load_validation_result(output_uri) if validation_result.validation_ok: io_utils.write_string_file( os.path.join(blessing.uri, constants.BLESSED_FILE_NAME), '') blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_BLESSED_KEY, constants.BLESSED_VALUE) else: io_utils.write_string_file( os.path.join(blessing.uri, constants.NOT_BLESSED_FILE_NAME), '') blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_BLESSED_KEY, constants.NOT_BLESSED_VALUE) absl.logging.info('Blessing result {} written to {}.'.format( validation_result.validation_ok, blessing.uri))
def test_model_path(self): # Test retrieving model folder. self.assertEqual(self._eval_model_path, path_utils.eval_model_path(self._output_uri)) self.assertEqual(self._serving_model_path, path_utils.serving_model_path(self._output_uri))
def Do(self, input_dict: Dict[Text, List[types.Artifact]], output_dict: Dict[Text, List[types.Artifact]], exec_properties: Dict[Text, Any]) -> None: """Runs a batch job to evaluate the eval_model against the given input. Args: input_dict: Input dict from input key to a list of Artifacts. - model_exports: exported model. - examples: examples for eval the model. output_dict: Output dict from output key to a list of Artifacts. - output: model evaluation results. exec_properties: A dict of execution properties. - eval_config: JSON string of tfma.EvalConfig. - feature_slicing_spec: JSON string of evaluator_pb2.FeatureSlicingSpec instance, providing the way to slice the data. Deprecated, use eval_config.slicing_specs instead. - example_splits: JSON-serialized list of names of splits on which the metrics are computed. Default behavior (when example_splits is set to None) is using the 'eval' split. Returns: None """ if constants.EXAMPLES_KEY not in input_dict: raise ValueError('EXAMPLES_KEY is missing from input dict.') if constants.MODEL_KEY not in input_dict: raise ValueError('MODEL_KEY is missing from input dict.') if constants.EVALUATION_KEY not in output_dict: raise ValueError('EVALUATION_KEY is missing from output dict.') if len(input_dict[constants.MODEL_KEY]) > 1: raise ValueError( 'There can be only one candidate model, there are %d.' % (len(input_dict[constants.MODEL_KEY]))) if constants.BASELINE_MODEL_KEY in input_dict and len( input_dict[constants.BASELINE_MODEL_KEY]) > 1: raise ValueError( 'There can be only one baseline model, there are %d.' % (len(input_dict[constants.BASELINE_MODEL_KEY]))) self._log_startup(input_dict, output_dict, exec_properties) # Add fairness indicator metric callback if necessary. fairness_indicator_thresholds = exec_properties.get( 'fairness_indicator_thresholds', None) add_metrics_callbacks = None if fairness_indicator_thresholds: add_metrics_callbacks = [ tfma.post_export_metrics.fairness_indicators( # pytype: disable=module-attr thresholds=fairness_indicator_thresholds), ] output_uri = artifact_utils.get_single_uri( output_dict[constants.EVALUATION_KEY]) eval_shared_model_fn = udf_utils.try_get_fn( exec_properties=exec_properties, fn_name='custom_eval_shared_model' ) or tfma.default_eval_shared_model run_validation = False models = [] if 'eval_config' in exec_properties and exec_properties['eval_config']: slice_spec = None has_baseline = bool(input_dict.get(constants.BASELINE_MODEL_KEY)) eval_config = tfma.EvalConfig() json_format.Parse(exec_properties['eval_config'], eval_config) eval_config = tfma.update_eval_config_with_defaults( eval_config, maybe_add_baseline=has_baseline, maybe_remove_baseline=not has_baseline) tfma.verify_eval_config(eval_config) # Do not validate model when there is no thresholds configured. This is to # avoid accidentally blessing models when users forget to set thresholds. run_validation = bool( tfma.metrics.metric_thresholds_from_metrics_specs( eval_config.metrics_specs)) if len(eval_config.model_specs) > 2: raise ValueError( """Cannot support more than two models. There are %d models in this eval_config.""" % (len(eval_config.model_specs))) # Extract model artifacts. for model_spec in eval_config.model_specs: if model_spec.is_baseline: model_uri = artifact_utils.get_single_uri( input_dict[constants.BASELINE_MODEL_KEY]) else: model_uri = artifact_utils.get_single_uri( input_dict[constants.MODEL_KEY]) if tfma.get_model_type(model_spec) == tfma.TF_ESTIMATOR: model_path = path_utils.eval_model_path(model_uri) else: model_path = path_utils.serving_model_path(model_uri) logging.info('Using %s as %s model.', model_path, model_spec.name) models.append( eval_shared_model_fn( eval_saved_model_path=model_path, model_name=model_spec.name, eval_config=eval_config, add_metrics_callbacks=add_metrics_callbacks)) else: eval_config = None assert ('feature_slicing_spec' in exec_properties and exec_properties['feature_slicing_spec'] ), 'both eval_config and feature_slicing_spec are unset.' feature_slicing_spec = evaluator_pb2.FeatureSlicingSpec() json_format.Parse(exec_properties['feature_slicing_spec'], feature_slicing_spec) slice_spec = self._get_slice_spec_from_feature_slicing_spec( feature_slicing_spec) model_uri = artifact_utils.get_single_uri( input_dict[constants.MODEL_KEY]) model_path = path_utils.eval_model_path(model_uri) logging.info('Using %s for model eval.', model_path) models.append( eval_shared_model_fn( eval_saved_model_path=model_path, model_name='', eval_config=None, add_metrics_callbacks=add_metrics_callbacks)) eval_shared_model = models[0] if len(models) == 1 else models schema = None if constants.SCHEMA_KEY in input_dict: schema = io_utils.SchemaReader().read( io_utils.get_only_uri_in_dir( artifact_utils.get_single_uri( input_dict[constants.SCHEMA_KEY]))) # Load and deserialize example splits from execution properties. example_splits = json_utils.loads( exec_properties.get(constants.EXAMPLE_SPLITS_KEY, 'null')) if not example_splits: example_splits = ['eval'] logging.info( "The 'example_splits' parameter is not set, using 'eval' " 'split.') logging.info('Evaluating model.') with self._make_beam_pipeline() as pipeline: examples_list = [] tensor_adapter_config = None # pylint: disable=expression-not-assigned if _USE_TFXIO and tfma.is_batched_input(eval_shared_model, eval_config): tfxio_factory = tfxio_utils.get_tfxio_factory_from_artifact( examples=[ artifact_utils.get_single_instance( input_dict[constants.EXAMPLES_KEY]) ], telemetry_descriptors=_TELEMETRY_DESCRIPTORS, schema=schema, raw_record_column_name=tfma_constants.ARROW_INPUT_COLUMN) # TODO(b/161935932): refactor after TFXIO supports multiple patterns. for split in example_splits: file_pattern = io_utils.all_files_pattern( artifact_utils.get_split_uri( input_dict[constants.EXAMPLES_KEY], split)) tfxio = tfxio_factory(file_pattern) data = (pipeline | 'ReadFromTFRecordToArrow[%s]' % split >> tfxio.BeamSource()) examples_list.append(data) if schema is not None: # Use last tfxio as TensorRepresentations and ArrowSchema are fixed. tensor_adapter_config = tensor_adapter.TensorAdapterConfig( arrow_schema=tfxio.ArrowSchema(), tensor_representations=tfxio.TensorRepresentations()) else: for split in example_splits: file_pattern = io_utils.all_files_pattern( artifact_utils.get_split_uri( input_dict[constants.EXAMPLES_KEY], split)) data = ( pipeline | 'ReadFromTFRecord[%s]' % split >> beam.io.ReadFromTFRecord(file_pattern=file_pattern)) examples_list.append(data) custom_extractors = udf_utils.try_get_fn( exec_properties=exec_properties, fn_name='custom_extractors') extractors = None if custom_extractors: extractors = custom_extractors( eval_shared_model=eval_shared_model, eval_config=eval_config, tensor_adapter_config=tensor_adapter_config) (examples_list | 'FlattenExamples' >> beam.Flatten() | 'ExtractEvaluateAndWriteResults' >> tfma.ExtractEvaluateAndWriteResults( eval_shared_model=models[0] if len(models) == 1 else models, eval_config=eval_config, extractors=extractors, output_path=output_uri, slice_spec=slice_spec, tensor_adapter_config=tensor_adapter_config)) logging.info('Evaluation complete. Results written to %s.', output_uri) if not run_validation: # TODO(jinhuang): delete the BLESSING_KEY from output_dict when supported. logging.info('No threshold configured, will not validate model.') return # Set up blessing artifact blessing = artifact_utils.get_single_instance( output_dict[constants.BLESSING_KEY]) blessing.set_string_custom_property( constants.ARTIFACT_PROPERTY_CURRENT_MODEL_URI_KEY, artifact_utils.get_single_uri(input_dict[constants.MODEL_KEY])) blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_CURRENT_MODEL_ID_KEY, input_dict[constants.MODEL_KEY][0].id) if input_dict.get(constants.BASELINE_MODEL_KEY): baseline_model = input_dict[constants.BASELINE_MODEL_KEY][0] blessing.set_string_custom_property( constants.ARTIFACT_PROPERTY_BASELINE_MODEL_URI_KEY, baseline_model.uri) blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_BASELINE_MODEL_ID_KEY, baseline_model.id) if 'current_component_id' in exec_properties: blessing.set_string_custom_property( 'component_id', exec_properties['current_component_id']) # Check validation result and write BLESSED file accordingly. logging.info('Checking validation results.') validation_result = tfma.load_validation_result(output_uri) if validation_result.validation_ok: io_utils.write_string_file( os.path.join(blessing.uri, constants.BLESSED_FILE_NAME), '') blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_BLESSED_KEY, constants.BLESSED_VALUE) else: io_utils.write_string_file( os.path.join(blessing.uri, constants.NOT_BLESSED_FILE_NAME), '') blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_BLESSED_KEY, constants.NOT_BLESSED_VALUE) logging.info('Blessing result %s written to %s.', validation_result.validation_ok, blessing.uri)
def testModelPath(self): # Test retrieving model folder. self.assertEqual(self._eval_model_path, path_utils.eval_model_path(self._output_uri)) self.assertEqual(self._serving_model_path, path_utils.serving_model_path(self._output_uri))
def Do(self, input_dict: Dict[str, List[types.Artifact]], output_dict: Dict[str, List[types.Artifact]], exec_properties: Dict[str, Any]) -> None: """Runs a batch job to evaluate the eval_model against the given input. Args: input_dict: Input dict from input key to a list of Artifacts. - model: exported model. - examples: examples for eval the model. output_dict: Output dict from output key to a list of Artifacts. - evaluation: model evaluation results. exec_properties: A dict of execution properties. - eval_config: JSON string of tfma.EvalConfig. - feature_slicing_spec: JSON string of evaluator_pb2.FeatureSlicingSpec instance, providing the way to slice the data. Deprecated, use eval_config.slicing_specs instead. - example_splits: JSON-serialized list of names of splits on which the metrics are computed. Default behavior (when example_splits is set to None) is using the 'eval' split. Returns: None """ if standard_component_specs.EXAMPLES_KEY not in input_dict: raise ValueError('EXAMPLES_KEY is missing from input dict.') if standard_component_specs.EVALUATION_KEY not in output_dict: raise ValueError('EVALUATION_KEY is missing from output dict.') if standard_component_specs.MODEL_KEY in input_dict and len( input_dict[standard_component_specs.MODEL_KEY]) > 1: raise ValueError('There can be only one candidate model, there are %d.' % (len(input_dict[standard_component_specs.MODEL_KEY]))) if standard_component_specs.BASELINE_MODEL_KEY in input_dict and len( input_dict[standard_component_specs.BASELINE_MODEL_KEY]) > 1: raise ValueError( 'There can be only one baseline model, there are %d.' % (len(input_dict[standard_component_specs.BASELINE_MODEL_KEY]))) self._log_startup(input_dict, output_dict, exec_properties) # Add fairness indicator metric callback if necessary. fairness_indicator_thresholds = json_utils.loads( exec_properties.get( standard_component_specs.FAIRNESS_INDICATOR_THRESHOLDS_KEY, 'null')) add_metrics_callbacks = None if fairness_indicator_thresholds: add_metrics_callbacks = [ tfma.post_export_metrics.fairness_indicators( # pytype: disable=module-attr thresholds=fairness_indicator_thresholds), ] output_uri = artifact_utils.get_single_uri( output_dict[constants.EVALUATION_KEY]) # Make sure user packages get propagated to the remote Beam worker. unused_module_path, extra_pip_packages = udf_utils.decode_user_module_key( exec_properties.get(standard_component_specs.MODULE_PATH_KEY, None)) for pip_package_path in extra_pip_packages: local_pip_package_path = io_utils.ensure_local(pip_package_path) self._beam_pipeline_args.append('--extra_package=%s' % local_pip_package_path) eval_shared_model_fn = udf_utils.try_get_fn( exec_properties=exec_properties, fn_name='custom_eval_shared_model') or tfma.default_eval_shared_model run_validation = False models = [] if (standard_component_specs.EVAL_CONFIG_KEY in exec_properties and exec_properties[standard_component_specs.EVAL_CONFIG_KEY]): slice_spec = None has_baseline = bool( input_dict.get(standard_component_specs.BASELINE_MODEL_KEY)) eval_config = tfma.EvalConfig() proto_utils.json_to_proto( exec_properties[standard_component_specs.EVAL_CONFIG_KEY], eval_config) # rubber_stamp is always assumed true, i.e., change threshold will always # be ignored when a baseline model is missing. if hasattr(tfma, 'utils'): eval_config = tfma.utils.update_eval_config_with_defaults( eval_config, has_baseline=has_baseline, rubber_stamp=True) tfma.utils.verify_eval_config(eval_config) else: # TODO(b/171992041): Replaced by tfma.utils. eval_config = tfma.update_eval_config_with_defaults( eval_config, has_baseline=has_baseline, rubber_stamp=True) tfma.verify_eval_config(eval_config) # Do not validate model when there is no thresholds configured. This is to # avoid accidentally blessing models when users forget to set thresholds. run_validation = bool( tfma.metrics.metric_thresholds_from_metrics_specs( eval_config.metrics_specs, eval_config=eval_config)) if len(eval_config.model_specs) > 2: raise ValueError( """Cannot support more than two models. There are %d models in this eval_config.""" % (len(eval_config.model_specs))) # Extract model artifacts. for model_spec in eval_config.model_specs: if standard_component_specs.MODEL_KEY not in input_dict: if not model_spec.prediction_key: raise ValueError( 'model_spec.prediction_key required if model not provided') continue if model_spec.is_baseline: model_artifact = artifact_utils.get_single_instance( input_dict[standard_component_specs.BASELINE_MODEL_KEY]) else: model_artifact = artifact_utils.get_single_instance( input_dict[standard_component_specs.MODEL_KEY]) # TODO(b/171992041): tfma.get_model_type replaced by tfma.utils. if ((hasattr(tfma, 'utils') and tfma.utils.get_model_type(model_spec) == tfma.TF_ESTIMATOR) or hasattr(tfma, 'get_model_type') and tfma.get_model_type(model_spec) == tfma.TF_ESTIMATOR): model_path = path_utils.eval_model_path( model_artifact.uri, path_utils.is_old_model_artifact(model_artifact)) else: model_path = path_utils.serving_model_path( model_artifact.uri, path_utils.is_old_model_artifact(model_artifact)) logging.info('Using %s as %s model.', model_path, model_spec.name) models.append( eval_shared_model_fn( eval_saved_model_path=model_path, model_name=model_spec.name, eval_config=eval_config, add_metrics_callbacks=add_metrics_callbacks)) else: eval_config = None assert (standard_component_specs.FEATURE_SLICING_SPEC_KEY in exec_properties and exec_properties[standard_component_specs.FEATURE_SLICING_SPEC_KEY] ), 'both eval_config and feature_slicing_spec are unset.' feature_slicing_spec = evaluator_pb2.FeatureSlicingSpec() proto_utils.json_to_proto( exec_properties[standard_component_specs.FEATURE_SLICING_SPEC_KEY], feature_slicing_spec) slice_spec = self._get_slice_spec_from_feature_slicing_spec( feature_slicing_spec) model_artifact = artifact_utils.get_single_instance( input_dict[standard_component_specs.MODEL_KEY]) model_path = path_utils.eval_model_path( model_artifact.uri, path_utils.is_old_model_artifact(model_artifact)) logging.info('Using %s for model eval.', model_path) models.append( eval_shared_model_fn( eval_saved_model_path=model_path, model_name='', eval_config=None, add_metrics_callbacks=add_metrics_callbacks)) eval_shared_model = models[0] if len(models) == 1 else models schema = None if standard_component_specs.SCHEMA_KEY in input_dict: schema = io_utils.SchemaReader().read( io_utils.get_only_uri_in_dir( artifact_utils.get_single_uri( input_dict[standard_component_specs.SCHEMA_KEY]))) # Load and deserialize example splits from execution properties. example_splits = json_utils.loads( exec_properties.get(standard_component_specs.EXAMPLE_SPLITS_KEY, 'null')) if not example_splits: example_splits = ['eval'] logging.info("The 'example_splits' parameter is not set, using 'eval' " 'split.') logging.info('Evaluating model.') # TempPipInstallContext is needed here so that subprocesses (which # may be created by the Beam multi-process DirectRunner) can find the # needed dependencies. # TODO(b/187122662): Move this to the ExecutorOperator or Launcher. with udf_utils.TempPipInstallContext(extra_pip_packages): with self._make_beam_pipeline() as pipeline: examples_list = [] tensor_adapter_config = None # pylint: disable=expression-not-assigned if tfma.is_batched_input(eval_shared_model, eval_config): tfxio_factory = tfxio_utils.get_tfxio_factory_from_artifact( examples=input_dict[standard_component_specs.EXAMPLES_KEY], telemetry_descriptors=_TELEMETRY_DESCRIPTORS, schema=schema, raw_record_column_name=tfma_constants.ARROW_INPUT_COLUMN) # TODO(b/161935932): refactor after TFXIO supports multiple patterns. for split in example_splits: split_uris = artifact_utils.get_split_uris( input_dict[standard_component_specs.EXAMPLES_KEY], split) for index in range(len(split_uris)): split_uri = split_uris[index] file_pattern = io_utils.all_files_pattern(split_uri) tfxio = tfxio_factory(file_pattern) data = ( pipeline | f'ReadFromTFRecordToArrow[{split}][{index}]' >> tfxio.BeamSource()) examples_list.append(data) if schema is not None: # Use last tfxio as TensorRepresentations and ArrowSchema are fixed. tensor_adapter_config = tensor_adapter.TensorAdapterConfig( arrow_schema=tfxio.ArrowSchema(), tensor_representations=tfxio.TensorRepresentations()) else: for split in example_splits: split_uris = artifact_utils.get_split_uris( input_dict[standard_component_specs.EXAMPLES_KEY], split) for index in range(len(split_uris)): split_uri = split_uris[index] file_pattern = io_utils.all_files_pattern(split_uri) data = ( pipeline | f'ReadFromTFRecord[{split}][{index}]' >> beam.io.ReadFromTFRecord(file_pattern=file_pattern)) examples_list.append(data) custom_extractors = udf_utils.try_get_fn( exec_properties=exec_properties, fn_name='custom_extractors') extractors = None if custom_extractors: extractors = custom_extractors( eval_shared_model=eval_shared_model, eval_config=eval_config, tensor_adapter_config=tensor_adapter_config) (examples_list | 'FlattenExamples' >> beam.Flatten() | 'ExtractEvaluateAndWriteResults' >> (tfma.ExtractEvaluateAndWriteResults( eval_shared_model=models[0] if len(models) == 1 else models, eval_config=eval_config, extractors=extractors, output_path=output_uri, slice_spec=slice_spec, tensor_adapter_config=tensor_adapter_config))) logging.info('Evaluation complete. Results written to %s.', output_uri) if not run_validation: # TODO(jinhuang): delete the BLESSING_KEY from output_dict when supported. logging.info('No threshold configured, will not validate model.') return # Set up blessing artifact blessing = artifact_utils.get_single_instance( output_dict[standard_component_specs.BLESSING_KEY]) blessing.set_string_custom_property( constants.ARTIFACT_PROPERTY_CURRENT_MODEL_URI_KEY, artifact_utils.get_single_uri( input_dict[standard_component_specs.MODEL_KEY])) blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_CURRENT_MODEL_ID_KEY, input_dict[standard_component_specs.MODEL_KEY][0].id) if input_dict.get(standard_component_specs.BASELINE_MODEL_KEY): baseline_model = input_dict[ standard_component_specs.BASELINE_MODEL_KEY][0] blessing.set_string_custom_property( constants.ARTIFACT_PROPERTY_BASELINE_MODEL_URI_KEY, baseline_model.uri) blessing.set_int_custom_property( constants.ARTIFACT_PROPERTY_BASELINE_MODEL_ID_KEY, baseline_model.id) if 'current_component_id' in exec_properties: blessing.set_string_custom_property( 'component_id', exec_properties['current_component_id']) # Check validation result and write BLESSED file accordingly. logging.info('Checking validation results.') validation_result = tfma.load_validation_result(output_uri) if validation_result.validation_ok: io_utils.write_string_file( os.path.join(blessing.uri, constants.BLESSED_FILE_NAME), '') blessing.set_int_custom_property(constants.ARTIFACT_PROPERTY_BLESSED_KEY, constants.BLESSED_VALUE) else: io_utils.write_string_file( os.path.join(blessing.uri, constants.NOT_BLESSED_FILE_NAME), '') blessing.set_int_custom_property(constants.ARTIFACT_PROPERTY_BLESSED_KEY, constants.NOT_BLESSED_VALUE) logging.info('Blessing result %s written to %s.', validation_result.validation_ok, blessing.uri)