示例#1
0
    def testCooFromListArray(self, list_array, expected_coo,
                             expected_dense_shape):

        for input_array in [
                pa.array(list_array),
                # it should work for sliced arrays.
                pa.array(list_array + list_array).slice(0, len(list_array)),
                pa.array(list_array + list_array).slice(len(list_array)),
        ]:
            coo, dense_shape = array_util.CooFromListArray(input_array)
            self.assertTrue(coo.type.equals(pa.int64()))
            self.assertTrue(dense_shape.type.equals(pa.int64()))

            self.assertEqual(expected_coo, coo.to_pylist())
            self.assertEqual(expected_dense_shape, dense_shape.to_pylist())
示例#2
0
  def GetTensor(self, record_batch: pa.RecordBatch,
                produce_eager_tensors: bool) -> Any:
    array = record_batch.column(self._column_index)
    coo_array, dense_shape_array = array_util.CooFromListArray(array)
    dense_shape_np = dense_shape_array.to_numpy()
    values_np = np.asarray(array.flatten())
    coo_np = coo_array.to_numpy().reshape(values_np.size, 2)

    if produce_eager_tensors:
      return tf.sparse.SparseTensor(
          indices=tf.convert_to_tensor(coo_np),
          dense_shape=tf.convert_to_tensor(dense_shape_np),
          values=tf.convert_to_tensor(values_np))
    return tf.compat.v1.SparseTensorValue(
        indices=coo_np, dense_shape=dense_shape_np, values=values_np)