def _run_inference_with_beam(self, example_path, inference_endpoint, prediction_log_path): with beam.Pipeline() as pipeline: _ = (pipeline | 'ReadExamples' >> beam.io.ReadFromTFRecord(example_path) | 'ParseExamples' >> beam.Map(tf.train.Example.FromString) | 'RunInference' >> run_inference.RunInference(inference_endpoint) | 'WritePredictions' >> beam.io.WriteToTFRecord( prediction_log_path, coder=beam.coders.ProtoCoder( prediction_log_pb2.PredictionLog)))
def testTelemetry(self): example_path = self._get_output_data_dir('examples') self._prepare_multihead_examples(example_path) model_path = self._get_output_data_dir('model') self._build_multihead_model(model_path) inference_endpoint = model_spec_pb2.InferenceEndpoint( saved_model_spec=model_spec_pb2.SavedModelSpec( model_path=model_path, signature_name=['classify_sum'])) pipeline = beam.Pipeline() _ = ( pipeline | 'ReadExamples' >> beam.io.ReadFromTFRecord(example_path) | 'ParseExamples' >> beam.Map(tf.train.Example.FromString) | 'RunInference' >> run_inference.RunInference(inference_endpoint)) run_result = pipeline.run() run_result.wait_until_finish() num_inferences = run_result.metrics().query( MetricsFilter().with_name('num_inferences')) self.assertTrue(num_inferences['counters']) self.assertEqual(num_inferences['counters'][0].result, 2) num_instances = run_result.metrics().query( MetricsFilter().with_name('num_instances')) self.assertTrue(num_instances['counters']) self.assertEqual(num_instances['counters'][0].result, 2) inference_request_batch_size = run_result.metrics().query( MetricsFilter().with_name('inference_request_batch_size')) self.assertTrue(inference_request_batch_size['distributions']) self.assertEqual( inference_request_batch_size['distributions'][0].result.sum, 2) inference_request_batch_byte_size = run_result.metrics().query( MetricsFilter().with_name('inference_request_batch_byte_size')) self.assertTrue(inference_request_batch_byte_size['distributions']) self.assertEqual( inference_request_batch_byte_size['distributions'][0].result.sum, sum(element.ByteSize() for element in self._multihead_examples)) inference_batch_latency_micro_secs = run_result.metrics().query( MetricsFilter().with_name('inference_batch_latency_micro_secs')) self.assertTrue(inference_batch_latency_micro_secs['distributions']) self.assertGreaterEqual( inference_batch_latency_micro_secs['distributions'][0].result.sum, 0) load_model_latency_milli_secs = run_result.metrics().query( MetricsFilter().with_name('load_model_latency_milli_secs')) self.assertTrue(load_model_latency_milli_secs['distributions']) self.assertGreaterEqual( load_model_latency_milli_secs['distributions'][0].result.sum, 0)
def _run_model_inference(self, model_path: Text, example_uris: Mapping[Text, Text], output_path: Text, model_spec: bulk_inferrer_pb2.ModelSpec) -> None: """Runs model inference on given example data. Args: model_path: Path to model. example_uris: Mapping of example split name to example uri. output_path: Path to output generated prediction logs. model_spec: bulk_inferrer_pb2.ModelSpec instance. Returns: None """ saved_model_spec = model_spec_pb2.SavedModelSpec( model_path=model_path, tag=model_spec.tag, signature_name=model_spec.model_signature_name) inference_endpoint = model_spec_pb2.InferenceEndpoint() inference_endpoint.saved_model_spec.CopyFrom(saved_model_spec) with self._make_beam_pipeline() as pipeline: data_list = [] for split, example_uri in example_uris.items(): data = ( pipeline | 'ReadData[{}]'.format(split) >> beam.io.ReadFromTFRecord( file_pattern=io_utils.all_files_pattern(example_uri))) data_list.append(data) _ = ([data for data in data_list] | 'FlattenExamples' >> beam.Flatten(pipeline=pipeline) | 'ParseExamples' >> beam.Map(tf.train.Example.FromString) | 'RunInference' >> run_inference.RunInference(inference_endpoint) | 'WritePredictionLogs' >> beam.io.WriteToTFRecord( output_path, file_name_suffix='.gz', coder=beam.coders.ProtoCoder( prediction_log_pb2.PredictionLog))) logging.info('Inference result written to %s.', output_path)