示例#1
1
文件: classif.py 项目: pdsujnow/tgen
    def _init_training(self, das_file, ttree_file, data_portion):
        """Initialize training.

        Store input data, initialize 1-hot feature representations for input and output and
        transform training data accordingly, initialize the classification neural network.
        """
        # read input
        log_info('Reading DAs from ' + das_file + '...')
        das = read_das(das_file)
        log_info('Reading t-trees from ' + ttree_file + '...')
        ttree_doc = read_ttrees(ttree_file)
        trees = trees_from_doc(ttree_doc, self.language, self.selector)

        # make training data smaller if necessary
        train_size = int(round(data_portion * len(trees)))
        self.train_trees = trees[:train_size]
        self.train_das = das[:train_size]

        # add empty tree + empty DA to training data
        # (i.e. forbid the network to keep any of its outputs "always-on")
        train_size += 1
        self.train_trees.append(TreeData())
        empty_da = DialogueAct()
        empty_da.parse('inform()')
        self.train_das.append(empty_da)

        self.train_order = range(len(self.train_trees))
        log_info('Using %d training instances.' % train_size)

        # initialize input features/embeddings
        if self.tree_embs:
            self.dict_size = self.tree_embs.init_dict(self.train_trees)
            self.X = np.array([self.tree_embs.get_embeddings(tree) for tree in self.train_trees])
        else:
            self.tree_feats = Features(['node: presence t_lemma formeme'])
            self.tree_vect = DictVectorizer(sparse=False, binarize_numeric=True)
            self.X = [self.tree_feats.get_features(tree, {}) for tree in self.train_trees]
            self.X = self.tree_vect.fit_transform(self.X)

        # initialize output features
        self.da_feats = Features(['dat: dat_presence', 'svp: svp_presence'])
        self.da_vect = DictVectorizer(sparse=False, binarize_numeric=True)
        self.y = [self.da_feats.get_features(None, {'da': da}) for da in self.train_das]
        self.y = self.da_vect.fit_transform(self.y)

        # initialize I/O shapes
        self.input_shape = [list(self.X[0].shape)]
        self.num_outputs = len(self.da_vect.get_feature_names())

        # initialize NN classifier
        self._init_neural_network()
示例#2
0
    def evaluate_file(self, das_file, ttree_file):
        """Evaluate the reranking classifier on a given pair of DA/tree files (show the
        total Hamming distance and total number of DAIs)

        @param das_file: DA file path
        @param ttree_file: trees/sentences file path
        @return: a tuple (total DAIs, distance)
        """
        das = read_das(das_file)
        ttree_doc = read_ttrees(ttree_file)
        if self.mode == 'tokens':
            tokens = tokens_from_doc(ttree_doc, self.language, self.selector)
            trees = self._tokens_to_flat_trees(tokens)
        elif self.mode == 'tagged_lemmas':
            tls = tagged_lemmas_from_doc(ttree_doc, self.language,
                                         self.selector)
            trees = self._tokens_to_flat_trees(tls)
        else:
            trees = trees_from_doc(ttree_doc, self.language, self.selector)

        da_len = 0
        dist = 0

        for da, tree in zip(das, trees):
            da_len += len(da)
            dist += self.dist_to_da(da, [tree])[0]

        return da_len, dist
示例#3
0
    def _init_training(self, das_file, ttree_file, data_portion):
        """Initialize training.

        Store input data, initialize 1-hot feature representations for input and output and
        transform training data accordingly, initialize the classification neural network.
        """
        # read input
        log_info('Reading DAs from ' + das_file + '...')
        das = read_das(das_file)
        log_info('Reading t-trees from ' + ttree_file + '...')
        ttree_doc = read_ttrees(ttree_file)
        trees = trees_from_doc(ttree_doc, self.language, self.selector)

        # make training data smaller if necessary
        train_size = int(round(data_portion * len(trees)))
        self.train_trees = trees[:train_size]
        self.train_das = das[:train_size]

        # add empty tree + empty DA to training data
        # (i.e. forbid the network to keep any of its outputs "always-on")
        train_size += 1
        self.train_trees.append(TreeData())
        empty_da = DA.parse('inform()')
        self.train_das.append(empty_da)

        self.train_order = range(len(self.train_trees))
        log_info('Using %d training instances.' % train_size)

        # initialize input features/embeddings
        if self.tree_embs:
            self.dict_size = self.tree_embs.init_dict(self.train_trees)
            self.X = np.array([
                self.tree_embs.get_embeddings(tree)
                for tree in self.train_trees
            ])
        else:
            self.tree_feats = Features(['node: presence t_lemma formeme'])
            self.tree_vect = DictVectorizer(sparse=False,
                                            binarize_numeric=True)
            self.X = [
                self.tree_feats.get_features(tree, {})
                for tree in self.train_trees
            ]
            self.X = self.tree_vect.fit_transform(self.X)

        # initialize output features
        self.da_feats = Features(['dat: dat_presence', 'svp: svp_presence'])
        self.da_vect = DictVectorizer(sparse=False, binarize_numeric=True)
        self.y = [
            self.da_feats.get_features(None, {'da': da})
            for da in self.train_das
        ]
        self.y = self.da_vect.fit_transform(self.y)

        # initialize I/O shapes
        self.input_shape = [list(self.X[0].shape)]
        self.num_outputs = len(self.da_vect.get_feature_names())

        # initialize NN classifier
        self._init_neural_network()
示例#4
0
    def evaluate_file(self, das_file, ttree_file):
        """Evaluate the reranking classifier on a given pair of DA/tree files (show the
        total Hamming distance and total number of DAIs)

        @param das_file: DA file path
        @param ttree_file: trees/sentences file path
        @return: a tuple (total DAIs, distance)
        """
        das = read_das(das_file)
        ttree_doc = read_ttrees(ttree_file)
        if self.mode == 'tokens':
            tokens = tokens_from_doc(ttree_doc, self.language, self.selector)
            trees = self._tokens_to_flat_trees(tokens)
        elif self.mode == 'tagged_lemmas':
            tls = tagged_lemmas_from_doc(ttree_doc, self.language, self.selector)
            trees = self._tokens_to_flat_trees(tls)
        else:
            trees = trees_from_doc(ttree_doc, self.language, self.selector)

        da_len = 0
        dist = 0

        for da, tree in zip(das, trees):
            da_len += len(da)
            dist += self.dist_to_da(da, [tree])[0]

        return da_len, dist
示例#5
0
文件: seq2seq.py 项目: pdsujnow/tgen
 def _load_trees(self, ttree_file, selector=None):
     """Load input trees/sentences from a .yaml.gz/.pickle.gz (trees) or .txt (sentences) file."""
     log_info('Reading t-trees/sentences from ' + ttree_file + '...')
     if ttree_file.endswith('.txt'):
         if not self.use_tokens:
             raise ValueError("Cannot read trees from a .txt file (%s)!" % ttree_file)
         return read_tokens(ttree_file)
     else:
         ttree_doc = read_ttrees(ttree_file)
         if selector is None:
             selector = self.selector
         if self.use_tokens:
             return tokens_from_doc(ttree_doc, self.language, selector)
         else:
             return trees_from_doc(ttree_doc, self.language, selector)
示例#6
0
 def _load_trees(self, ttree_file, selector=None):
     """Load input trees/sentences from a .yaml.gz/.pickle.gz (trees) or .txt (sentences) file."""
     log_info('Reading t-trees/sentences from ' + ttree_file + '...')
     if ttree_file.endswith('.txt'):
         if not self.use_tokens:
             raise ValueError("Cannot read trees from a .txt file (%s)!" %
                              ttree_file)
         return read_tokens(ttree_file)
     else:
         ttree_doc = read_ttrees(ttree_file)
         if selector is None:
             selector = self.selector
         if self.use_tokens:
             return tokens_from_doc(ttree_doc, self.language, selector)
         else:
             return trees_from_doc(ttree_doc, self.language, selector)
示例#7
0
def asearch_gen(args):
    """A*search generation"""
    from pytreex.core.document import Document

    opts, files = getopt(args, 'e:d:w:c:s:')
    eval_file = None
    fname_ttrees_out = None
    cfg_file = None
    eval_selector = ''

    for opt, arg in opts:
        if opt == '-e':
            eval_file = arg
        elif opt == '-s':
            eval_selector = arg
        elif opt == '-d':
            set_debug_stream(file_stream(arg, mode='w'))
        elif opt == '-w':
            fname_ttrees_out = arg
        elif opt == '-c':
            cfg_file = arg

    if len(files) != 3:
        sys.exit('Invalid arguments.\n' + __doc__)
    fname_cand_model, fname_rank_model, fname_da_test = files

    log_info('Initializing...')
    candgen = RandomCandidateGenerator.load_from_file(fname_cand_model)
    ranker = PerceptronRanker.load_from_file(fname_rank_model)
    cfg = Config(cfg_file) if cfg_file else {}
    cfg.update({'candgen': candgen, 'ranker': ranker})
    tgen = ASearchPlanner(cfg)

    log_info('Generating...')
    das = read_das(fname_da_test)

    if eval_file is None:
        gen_doc = Document()
    else:
        eval_doc = read_ttrees(eval_file)
        if eval_selector == tgen.selector:
            gen_doc = Document()
        else:
            gen_doc = eval_doc

    # generate and evaluate
    if eval_file is not None:
        # generate + analyze open&close lists
        lists_analyzer = ASearchListsAnalyzer()
        for num, (da, gold_tree) in enumerate(zip(
                das, trees_from_doc(eval_doc, tgen.language, eval_selector)),
                                              start=1):
            log_debug("\n\nTREE No. %03d" % num)
            gen_tree = tgen.generate_tree(da, gen_doc)
            lists_analyzer.append(gold_tree, tgen.open_list, tgen.close_list)
            if gen_tree != gold_tree:
                log_debug("\nDIFFING TREES:\n" +
                          tgen.ranker.diffing_trees_with_scores(
                              da, gold_tree, gen_tree) + "\n")

        log_info('Gold tree BEST: %.4f, on CLOSE: %.4f, on ANY list: %4f' %
                 lists_analyzer.stats())

        # evaluate the generated trees against golden trees
        eval_ttrees = ttrees_from_doc(eval_doc, tgen.language, eval_selector)
        gen_ttrees = ttrees_from_doc(gen_doc, tgen.language, tgen.selector)

        log_info('Evaluating...')
        evaler = Evaluator()
        for eval_bundle, eval_ttree, gen_ttree, da in zip(
                eval_doc.bundles, eval_ttrees, gen_ttrees, das):
            # add some stats about the tree directly into the output file
            add_bundle_text(
                eval_bundle, tgen.language, tgen.selector + 'Xscore',
                "P: %.4f R: %.4f F1: %.4f" %
                p_r_f1_from_counts(*corr_pred_gold(eval_ttree, gen_ttree)))

            # collect overall stats
            evaler.append(eval_ttree, gen_ttree,
                          ranker.score(TreeData.from_ttree(eval_ttree), da),
                          ranker.score(TreeData.from_ttree(gen_ttree), da))
        # print overall stats
        log_info("NODE precision: %.4f, Recall: %.4f, F1: %.4f" %
                 evaler.p_r_f1())
        log_info("DEP  precision: %.4f, Recall: %.4f, F1: %.4f" %
                 evaler.p_r_f1(EvalTypes.DEP))
        log_info("Tree size stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" %
                 evaler.size_stats())
        log_info("Score stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" %
                 evaler.score_stats())
        log_info(
            "Common subtree stats:\n -- SIZE: %s\n -- ΔGLD: %s\n -- ΔPRD: %s" %
            evaler.common_substruct_stats())
    # just generate
    else:
        for da in das:
            tgen.generate_tree(da, gen_doc)

    # write output
    if fname_ttrees_out is not None:
        log_info('Writing output...')
        write_ttrees(gen_doc, fname_ttrees_out)
示例#8
0
    def _init_training(self, das, trees, data_portion):
        """Initialize training.

        Store input data, initialize 1-hot feature representations for input and output and
        transform training data accordingly, initialize the classification neural network.

        @param das: name of source file with training DAs, or list of DAs
        @param trees: name of source file with corresponding trees/sentences, or list of trees
        @param data_portion: portion of the training data to be used (0.0-1.0)
        """
        # read input from files or take it directly from parameters
        if not isinstance(das, list):
            log_info('Reading DAs from ' + das + '...')
            das = read_das(das)
        if not isinstance(trees, list):
            log_info('Reading t-trees from ' + trees + '...')
            ttree_doc = read_ttrees(trees)
            if self.mode == 'tokens':
                tokens = tokens_from_doc(ttree_doc, self.language,
                                         self.selector)
                trees = self._tokens_to_flat_trees(tokens)
            elif self.mode == 'tagged_lemmas':
                tls = tagged_lemmas_from_doc(ttree_doc, self.language,
                                             self.selector)
                trees = self._tokens_to_flat_trees(tls, use_tags=True)
            else:
                trees = trees_from_doc(ttree_doc, self.language, self.selector)
        elif self.mode in ['tokens', 'tagged_lemmas']:
            trees = self._tokens_to_flat_trees(
                trees, use_tags=self.mode == 'tagged_lemmas')

        # make training data smaller if necessary
        train_size = int(round(data_portion * len(trees)))
        self.train_trees = trees[:train_size]
        self.train_das = das[:train_size]

        # ignore contexts, if they are contained in the DAs
        if isinstance(self.train_das[0], tuple):
            self.train_das = [da for (context, da) in self.train_das]
        # delexicalize if DAs are lexicalized and we don't want that
        if self.delex_slots:
            self.train_das = [
                da.get_delexicalized(self.delex_slots) for da in self.train_das
            ]

        # add empty tree + empty DA to training data
        # (i.e. forbid the network to keep any of its outputs "always-on")
        train_size += 1
        self.train_trees.append(TreeData())
        empty_da = DA.parse('inform()')
        self.train_das.append(empty_da)

        self.train_order = range(len(self.train_trees))
        log_info('Using %d training instances.' % train_size)

        # initialize input features/embeddings
        if self.tree_embs:
            self.dict_size = self.tree_embs.init_dict(self.train_trees)
            self.X = np.array([
                self.tree_embs.get_embeddings(tree)
                for tree in self.train_trees
            ])
        else:
            self.tree_feats = Features(['node: presence t_lemma formeme'])
            self.tree_vect = DictVectorizer(sparse=False,
                                            binarize_numeric=True)
            self.X = [
                self.tree_feats.get_features(tree, {})
                for tree in self.train_trees
            ]
            self.X = self.tree_vect.fit_transform(self.X)

        # initialize output features
        self.da_feats = Features(['dat: dat_presence', 'svp: svp_presence'])
        self.da_vect = DictVectorizer(sparse=False, binarize_numeric=True)
        self.y = [
            self.da_feats.get_features(None, {'da': da})
            for da in self.train_das
        ]
        self.y = self.da_vect.fit_transform(self.y)
        log_info('Number of binary classes: %d.' %
                 len(self.da_vect.get_feature_names()))

        # initialize I/O shapes
        if not self.tree_embs:
            self.input_shape = list(self.X[0].shape)
        else:
            self.input_shape = self.tree_embs.get_embeddings_shape()
        self.num_outputs = len(self.da_vect.get_feature_names())

        # initialize NN classifier
        self._init_neural_network()
        # initialize the NN variables
        self.session.run(tf.global_variables_initializer())
示例#9
0
opts, files = getopt(sys.argv[1:], 'l:s:')

if len(files) != 2:
    sys.exit('Usage: python inspect_data.py [-l lang] [-s selector] <trees.yaml> <das.txt>')

language = 'en'
selector = ''

for opt, arg in opts:
    if opt == '-l':
        language = arg
    elif opt == '-s':
        selector = arg

trees = trees_from_doc(read_ttrees(files[0]), language, selector)
das = read_das(files[1])


# TREE SIZES

tree_sizes = defaultdict(int)
for tree in trees:
    tree_sizes[len(tree)] += 1

print "Tree sizes:\n==========="
for k, v in sorted(tree_sizes.items()):
    print k, "\t", v

# DAS -> NODES
示例#10
0
文件: run_tgen.py 项目: UFAL-DSG/tgen
def asearch_gen(args):
    """A*search generation"""
    from pytreex.core.document import Document

    opts, files = getopt(args, 'e:d:w:c:s:')
    eval_file = None
    fname_ttrees_out = None
    cfg_file = None
    eval_selector = ''

    for opt, arg in opts:
        if opt == '-e':
            eval_file = arg
        elif opt == '-s':
            eval_selector = arg
        elif opt == '-d':
            set_debug_stream(file_stream(arg, mode='w'))
        elif opt == '-w':
            fname_ttrees_out = arg
        elif opt == '-c':
            cfg_file = arg

    if len(files) != 3:
        sys.exit('Invalid arguments.\n' + __doc__)
    fname_cand_model, fname_rank_model, fname_da_test = files

    log_info('Initializing...')
    candgen = RandomCandidateGenerator.load_from_file(fname_cand_model)
    ranker = PerceptronRanker.load_from_file(fname_rank_model)
    cfg = Config(cfg_file) if cfg_file else {}
    cfg.update({'candgen': candgen, 'ranker': ranker})
    tgen = ASearchPlanner(cfg)

    log_info('Generating...')
    das = read_das(fname_da_test)

    if eval_file is None:
        gen_doc = Document()
    else:
        eval_doc = read_ttrees(eval_file)
        if eval_selector == tgen.selector:
            gen_doc = Document()
        else:
            gen_doc = eval_doc

    # generate and evaluate
    if eval_file is not None:
        # generate + analyze open&close lists
        lists_analyzer = ASearchListsAnalyzer()
        for num, (da, gold_tree) in enumerate(zip(das,
                                                  trees_from_doc(eval_doc, tgen.language, eval_selector)),
                                              start=1):
            log_debug("\n\nTREE No. %03d" % num)
            gen_tree = tgen.generate_tree(da, gen_doc)
            lists_analyzer.append(gold_tree, tgen.open_list, tgen.close_list)
            if gen_tree != gold_tree:
                log_debug("\nDIFFING TREES:\n" + tgen.ranker.diffing_trees_with_scores(da, gold_tree, gen_tree) + "\n")

        log_info('Gold tree BEST: %.4f, on CLOSE: %.4f, on ANY list: %4f' % lists_analyzer.stats())

        # evaluate the generated trees against golden trees
        eval_ttrees = ttrees_from_doc(eval_doc, tgen.language, eval_selector)
        gen_ttrees = ttrees_from_doc(gen_doc, tgen.language, tgen.selector)

        log_info('Evaluating...')
        evaler = Evaluator()
        for eval_bundle, eval_ttree, gen_ttree, da in zip(eval_doc.bundles, eval_ttrees, gen_ttrees, das):
            # add some stats about the tree directly into the output file
            add_bundle_text(eval_bundle, tgen.language, tgen.selector + 'Xscore',
                            "P: %.4f R: %.4f F1: %.4f" % p_r_f1_from_counts(*corr_pred_gold(eval_ttree, gen_ttree)))

            # collect overall stats
            evaler.append(eval_ttree,
                          gen_ttree,
                          ranker.score(TreeData.from_ttree(eval_ttree), da),
                          ranker.score(TreeData.from_ttree(gen_ttree), da))
        # print overall stats
        log_info("NODE precision: %.4f, Recall: %.4f, F1: %.4f" % evaler.p_r_f1())
        log_info("DEP  precision: %.4f, Recall: %.4f, F1: %.4f" % evaler.p_r_f1(EvalTypes.DEP))
        log_info("Tree size stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" % evaler.size_stats())
        log_info("Score stats:\n * GOLD %s\n * PRED %s\n * DIFF %s" % evaler.score_stats())
        log_info("Common subtree stats:\n -- SIZE: %s\n -- ΔGLD: %s\n -- ΔPRD: %s" %
                 evaler.common_substruct_stats())
    # just generate
    else:
        for da in das:
            tgen.generate_tree(da, gen_doc)

    # write output
    if fname_ttrees_out is not None:
        log_info('Writing output...')
        write_ttrees(gen_doc, fname_ttrees_out)
示例#11
0
#!/usr/bin/env python

from flect.config import Config
from tgen.features import Features
from tgen.futil import trees_from_doc, read_ttrees, read_das
import sys
import timeit
import datetime

if len(sys.argv[1:]) != 3:
    sys.exit('Usage: ./bench_feats.py features_cfg.py trees.yaml.gz das.txt')

print >> sys.stderr, 'Loading...'

cfg = Config(sys.argv[1])
trees = trees_from_doc(read_ttrees(sys.argv[2]), 'en', '')
das = read_das(sys.argv[3])

feats = Features(cfg['features'])


def test_func():
    for tree, da in zip(trees, das):
        feats.get_features(tree, {'da': da})


print >> sys.stderr, 'Running test...'
secs = timeit.timeit('test_func()',
                     setup='from __main__ import test_func',
                     number=10)
td = datetime.timedelta(seconds=secs)
示例#12
0
#!/usr/bin/env python


from flect.config import Config
from tgen.features import Features
from tgen.futil import trees_from_doc, read_ttrees, read_das
import sys
import timeit
import datetime

if len(sys.argv[1:]) != 3:
    sys.exit('Usage: ./bench_feats.py features_cfg.py trees.yaml.gz das.txt')

print >> sys.stderr, 'Loading...'

cfg = Config(sys.argv[1])
trees = trees_from_doc(read_ttrees(sys.argv[2]), 'en', '')
das = read_das(sys.argv[3])

feats = Features(cfg['features'])

def test_func():
    for tree, da in zip(trees, das):
        feats.get_features(tree, {'da': da})
    

print >> sys.stderr, 'Running test...'
secs = timeit.timeit('test_func()', setup='from __main__ import test_func', number=10)
td = datetime.timedelta(seconds=secs)
print >> sys.stderr, 'Time taken: %s' % str(td)
示例#13
0
if len(files) != 2:
    sys.exit(
        'Usage: python inspect_data.py [-l lang] [-s selector] <trees.yaml> <das.txt>'
    )

language = 'en'
selector = ''

for opt, arg in opts:
    if opt == '-l':
        language = arg
    elif opt == '-s':
        selector = arg

trees = trees_from_doc(read_ttrees(files[0]), language, selector)
das = read_das(files[1])

# TREE SIZES

tree_sizes = defaultdict(int)
for tree in trees:
    tree_sizes[len(tree)] += 1

print "Tree sizes:\n==========="
for k, v in sorted(tree_sizes.items()):
    print k, "\t", v

# DAS -> NODES

das_for_nodes = {}
示例#14
0
    def _init_training(self, das, trees, data_portion):
        """Initialize training.

        Store input data, initialize 1-hot feature representations for input and output and
        transform training data accordingly, initialize the classification neural network.

        @param das: name of source file with training DAs, or list of DAs
        @param trees: name of source file with corresponding trees/sentences, or list of trees
        @param data_portion: portion of the training data to be used (0.0-1.0)
        """
        # read input from files or take it directly from parameters
        if not isinstance(das, list):
            log_info('Reading DAs from ' + das + '...')
            das = read_das(das)
        if not isinstance(trees, list):
            log_info('Reading t-trees from ' + trees + '...')
            ttree_doc = read_ttrees(trees)
            if self.mode == 'tokens':
                tokens = tokens_from_doc(ttree_doc, self.language, self.selector)
                trees = self._tokens_to_flat_trees(tokens)
            elif self.mode == 'tagged_lemmas':
                tls = tagged_lemmas_from_doc(ttree_doc, self.language, self.selector)
                trees = self._tokens_to_flat_trees(tls, use_tags=True)
            else:
                trees = trees_from_doc(ttree_doc, self.language, self.selector)
        elif self.mode in ['tokens', 'tagged_lemmas']:
            trees = self._tokens_to_flat_trees(trees, use_tags=self.mode == 'tagged_lemmas')

        # make training data smaller if necessary
        train_size = int(round(data_portion * len(trees)))
        self.train_trees = trees[:train_size]
        self.train_das = das[:train_size]

        # ignore contexts, if they are contained in the DAs
        if isinstance(self.train_das[0], tuple):
            self.train_das = [da for (context, da) in self.train_das]
        # delexicalize if DAs are lexicalized and we don't want that
        if self.delex_slots:
            self.train_das = [da.get_delexicalized(self.delex_slots) for da in self.train_das]

        # add empty tree + empty DA to training data
        # (i.e. forbid the network to keep any of its outputs "always-on")
        train_size += 1
        self.train_trees.append(TreeData())
        empty_da = DA.parse('inform()')
        self.train_das.append(empty_da)

        self.train_order = range(len(self.train_trees))
        log_info('Using %d training instances.' % train_size)

        # initialize input features/embeddings
        if self.tree_embs:
            self.dict_size = self.tree_embs.init_dict(self.train_trees)
            self.X = np.array([self.tree_embs.get_embeddings(tree) for tree in self.train_trees])
        else:
            self.tree_feats = Features(['node: presence t_lemma formeme'])
            self.tree_vect = DictVectorizer(sparse=False, binarize_numeric=True)
            self.X = [self.tree_feats.get_features(tree, {}) for tree in self.train_trees]
            self.X = self.tree_vect.fit_transform(self.X)

        # initialize output features
        self.da_feats = Features(['dat: dat_presence', 'svp: svp_presence'])
        self.da_vect = DictVectorizer(sparse=False, binarize_numeric=True)
        self.y = [self.da_feats.get_features(None, {'da': da}) for da in self.train_das]
        self.y = self.da_vect.fit_transform(self.y)
        log_info('Number of binary classes: %d.' % len(self.da_vect.get_feature_names()))

        # initialize I/O shapes
        if not self.tree_embs:
            self.input_shape = list(self.X[0].shape)
        else:
            self.input_shape = self.tree_embs.get_embeddings_shape()
        self.num_outputs = len(self.da_vect.get_feature_names())

        # initialize NN classifier
        self._init_neural_network()
        # initialize the NN variables
        self.session.run(tf.global_variables_initializer())