示例#1
0
                       GpuCAReduceCPY)
from .subtensor import (GpuIncSubtensor, GpuSubtensor, GpuAdvancedSubtensor1,
                        GpuAdvancedIncSubtensor1,
                        GpuAdvancedIncSubtensor1_dev20)
from .opt_util import alpha_merge, output_merge

_logger = logging.getLogger("theano.gpuarray.opt")

gpu_optimizer = EquilibriumDB()
gpu_cut_copies = EquilibriumDB()

gpu_seqopt = SequenceDB()

# Don't register this right now
conv_groupopt = LocalGroupDB()
conv_groupopt.__name__ = "gpua_conv_opts"

gpu_seqopt.register('gpuarray_local_optimiziations', gpu_optimizer, 1,
                    'fast_compile', 'fast_run', 'gpuarray')
gpu_seqopt.register('gpuarray_cut_transfers', gpu_cut_copies, 2,
                    'fast_compile', 'fast_run', 'gpuarray')

# do not add 'fast_run' to these two as this would always enable gpuarray mode
optdb.register('gpuarray_opt', gpu_seqopt,
               optdb.__position__.get('add_destroy_handler', 49.5) - 1,
               'gpuarray')


def register_opt(*tags, **kwargs):
    def f(local_opt):
        name = (kwargs and kwargs.pop('name')) or local_opt.__name__
示例#2
0
    GpuAdvancedSubtensor1,
    GpuAdvancedIncSubtensor1,
    GpuAdvancedIncSubtensor1_dev20,
)
from .opt_util import alpha_merge, output_merge

_logger = logging.getLogger("theano.sandbox.gpuarray.opt")

gpu_optimizer = EquilibriumDB()
gpu_cut_copies = EquilibriumDB()

gpu_seqopt = SequenceDB()

# Don't register this right now
conv_groupopt = LocalGroupDB()
conv_groupopt.__name__ = "gpua_conv_opts"

gpu_seqopt.register("gpuarray_local_optimiziations", gpu_optimizer, 1, "fast_compile", "fast_run", "gpuarray")
gpu_seqopt.register("gpuarray_cut_transfers", gpu_cut_copies, 2, "fast_compile", "fast_run", "gpuarray")

# do not add 'fast_run' to these two as this would always enable gpuarray mode
optdb.register("gpuarray_opt", gpu_seqopt, optdb.__position__.get("add_destroy_handler", 49.5) - 1, "gpuarray")


def register_opt(*tags, **kwargs):
    def f(local_opt):
        name = (kwargs and kwargs.pop("name")) or local_opt.__name__
        gpu_optimizer.register(name, local_opt, "fast_run", "gpuarray", *tags)
        return local_opt

    return f
示例#3
0
# Not used for an EquilibriumOptimizer. It has the "tracks" that we need for GraphToGPUDB.
gpu_optimizer2 = EquilibriumDB()

gpu_seqopt = SequenceDB()

# do not add 'fast_run' to these two as this would always enable gpuarray mode
optdb.register(
    "gpuarray_opt",
    gpu_seqopt,
    optdb.__position__.get("add_destroy_handler", 49.5) - 1,
    "gpuarray",
)

pool_db = LocalGroupDB()
pool_db2 = LocalGroupDB(local_opt=GraphToGPULocalOptGroup)
pool_db2.__name__ = "pool_db2"

matrix_ops_db = LocalGroupDB()
matrix_ops_db2 = LocalGroupDB(local_opt=GraphToGPULocalOptGroup)
matrix_ops_db2.__name__ = "matrix_ops_db2"

abstract_batch_norm_db = LocalGroupDB()
abstract_batch_norm_db2 = LocalGroupDB(local_opt=GraphToGPULocalOptGroup)
abstract_batch_norm_db2.__name__ = "abstract_batch_norm_db2"

abstract_batch_norm_groupopt = LocalGroupDB()
abstract_batch_norm_groupopt.__name__ = "gpuarray_batchnorm_opts"


def register_opt(*tags, **kwargs):
    def f(local_opt):