示例#1
0
文件: sigm.py 项目: 12190143/Theano
def local_exp_over_1_plus_exp(node):
    """
    exp(x)/(1+exp(x)) -> sigm(x)
    c/(1+exp(x)) -> c*sigm(-x)

    """
    # this optimization should be done for numerical stability
    # so we don't care to check client counts
    if node.op == tensor.true_div:

        # find all the exp() terms in the numerator
        num, denom = node.inputs
        num_exp_x, num_rest, num_neg = partition_num_or_denom(num, is_exp)
        denom_1pexp, denom_rest, \
            denom_neg = partition_num_or_denom(denom, is_1pexp)

        sigmoids = []
        for t in denom_1pexp:
            if t in num_exp_x:
                # case: exp(x) /(1+exp(x))
                sigmoids.append(sigmoid(t))
                del num_exp_x[num_exp_x.index(t)]
            else:
                # case: 1/(1+exp(x))
                sigmoids.append(sigmoid(-t))
            copy_stack_trace(node.outputs[0], sigmoids[-1])

        if not sigmoids:  # we didn't find any.  abort
            return
        # put the new numerator together
        new_num = sigmoids + [tensor.exp(t) for t in num_exp_x] + num_rest
        if len(new_num) == 1:
            new_num = new_num[0]
        else:
            new_num = tensor.mul(*new_num)

        if num_neg ^ denom_neg:
            new_num = -new_num

        copy_stack_trace(num, new_num)

        if len(denom_rest) == 0:
            return [new_num]
        elif len(denom_rest) == 1:
            out = new_num / denom_rest[0]
        else:
            out = new_num / tensor.mul(*denom_rest)

        copy_stack_trace(node.outputs[0], out)
        return [out]
示例#2
0
def local_exp_over_1_plus_exp(node):
    """
    exp(x)/(1+exp(x)) -> sigm(x)
    c/(1+exp(x)) -> c*sigm(-x)

    """
    # this optimization should be done for numerical stability
    # so we don't care to check client counts
    if node.op == tensor.true_div:

        # find all the exp() terms in the numerator
        num, denom = node.inputs
        num_exp_x, num_rest, num_neg = partition_num_or_denom(num, is_exp)
        denom_1pexp, denom_rest, denom_neg = partition_num_or_denom(
            denom, is_1pexp)

        sigmoids = []
        for t in denom_1pexp:
            if t in num_exp_x:
                # case: exp(x) /(1+exp(x))
                sigmoids.append(sigmoid(t))
                del num_exp_x[num_exp_x.index(t)]
            else:
                # case: 1/(1+exp(x))
                sigmoids.append(sigmoid(-t))
            copy_stack_trace(node.outputs[0], sigmoids[-1])

        if not sigmoids:  # we didn't find any.  abort
            return
        # put the new numerator together
        new_num = sigmoids + [tensor.exp(t) for t in num_exp_x] + num_rest
        if len(new_num) == 1:
            new_num = new_num[0]
        else:
            new_num = tensor.mul(*new_num)

        if num_neg ^ denom_neg:
            new_num = -new_num

        copy_stack_trace(num, new_num)

        if len(denom_rest) == 0:
            return [new_num]
        elif len(denom_rest) == 1:
            out = new_num / denom_rest[0]
        else:
            out = new_num / tensor.mul(*denom_rest)

        copy_stack_trace(node.outputs[0], out)
        return [out]
示例#3
0
def compute_mul(tree):
    """
    Compute the Variable that is the output of a multiplication tree.

    This is the inverse of the operation performed by `parse_mul_tree`, i.e.
    compute_mul(parse_mul_tree(tree)) == tree.

    Parameters
    ----------
    tree
        A multiplication tree (as output by `parse_mul_tree`).

    Returns
    -------
    object
        A Variable that computes the multiplication represented by the tree.

    """
    neg, inputs = tree
    if inputs is None:
        raise AssertionError(
            "Function `compute_mul` found a missing leaf, did you forget to "
            "call `simplify_mul` on the tree first?")
    elif isinstance(inputs, list):
        # Recurse through inputs.
        rval = tensor.mul(*list(map(compute_mul, inputs)))
    else:
        rval = inputs
    if neg:
        rval = -rval
    return rval
示例#4
0
文件: sigm.py 项目: naisanza/Theano
def compute_mul(tree):
    """
    Compute the Variable that is the output of a multiplication tree.

    This is the inverse of the operation performed by `parse_mul_tree`, i.e.
    compute_mul(parse_mul_tree(tree)) == tree.

    Parameters
    ----------
    tree
        A multiplication tree (as output by `parse_mul_tree`).

    Returns
    -------
    object
        A Variable that computes the multiplication represented by the tree.

    """
    neg, inputs = tree
    if inputs is None:
        raise AssertionError(
            "Function `compute_mul` found a missing leaf, did you forget to " "call `simplify_mul` on the tree first?"
        )
    elif isinstance(inputs, list):
        # Recurse through inputs.
        rval = tensor.mul(*list(map(compute_mul, inputs)))
    else:
        rval = inputs
    if neg:
        rval = -rval
    return rval
示例#5
0
def is_neg(var):
    """
    Match a variable with the `-x` pattern.

    :param var: The Variable to analyze.

    :return: `x` if `var` is of the form `-x`, or None otherwise.
    """
    apply = var.owner
    if not apply:
        return None
    # First match against `tensor.neg`.
    if apply.op == tensor.neg:
        return apply.inputs[0]
    # Then match against a multiplication by -1.
    if apply.op == tensor.mul and len(apply.inputs) >= 2:
        for idx, mul_input in enumerate(apply.inputs):
            try:
                constant = opt.get_scalar_constant_value(mul_input)
                is_minus_1 = numpy.allclose(constant, -1)
            except NotScalarConstantError:
                is_minus_1 = False
            if is_minus_1:
                # Found a multiplication by -1.
                if len(apply.inputs) == 2:
                    # Only return the other input.
                    return apply.inputs[1 - idx]
                else:
                    # Return the multiplication of all other inputs.
                    return tensor.mul(*(apply.inputs[0:idx] +
                                        apply.inputs[idx + 1:]))
    # No match.
    return None
示例#6
0
 def infer_shape(self, node, inputs_shapes):
     if isinstance(node.inputs[1], theano.Constant) and node.inputs[1].data is None:
         return [(mul(*inputs_shapes[0]),)]
     # axis should not be None, so there should be the same number of
     # dimensions in the input and output
     assert node.inputs[0].ndim == node.outputs[0].ndim
     assert inputs_shapes[1] == ()
     return [inputs_shapes[0]]
示例#7
0
 def infer_shape(self, node, inputs_shapes):
     if _variable_is_none(node.inputs[1]):
         return [(mul(*inputs_shapes[0]), )]
     # axis should not be None, so there should be the same number of
     # dimensions in the input and output
     assert node.inputs[0].ndim == node.outputs[0].ndim
     assert inputs_shapes[1] == ()
     return [inputs_shapes[0]]
示例#8
0
文件: sort.py 项目: Theano/Theano
 def infer_shape(self, node, inputs_shapes):
     if _variable_is_none(node.inputs[1]):
         return [(mul(*inputs_shapes[0]),)]
     # axis should not be None, so there should be the same number of
     # dimensions in the input and output
     assert node.inputs[0].ndim == node.outputs[0].ndim
     assert inputs_shapes[1] == ()
     return [inputs_shapes[0]]
示例#9
0
 def infer_shape(self, node, inputs_shapes):
     if (isinstance(node.inputs[1], theano.Constant) and
             node.inputs[1].data is None):
         return [(mul(*inputs_shapes[0]),)]
     # axis should not be None, so there should be the same number of
     # dimensions in the input and output
     assert node.inputs[0].ndim == node.outputs[0].ndim
     assert inputs_shapes[1] == ()
     return [inputs_shapes[0]]
示例#10
0
 def infer_shape(self, node, inputs_shapes):
     if isinstance(node.inputs[1], theano.Constant) and node.inputs[1].data is None:
         # That means axis = None,
         # So the array is flattened before being sorted
         return [(mul(*inputs_shapes[0]),)]
     # axis should not be None
     # So there should be the same number of dimensions
     # in the input and output
     assert node.inputs[0].ndim == node.outputs[0].ndim
     assert inputs_shapes[1] == ()
     return [inputs_shapes[0]]
示例#11
0
 def infer_shape(self, node, inputs_shapes):
     if _variable_is_none(node.inputs[1]):
         # That means axis = None,
         # So the array is flattened before being sorted
         return [(mul(*inputs_shapes[0]), )]
     # axis should not be None
     # So there should be the same number of dimensions
     # in the input and output
     assert node.inputs[0].ndim == node.outputs[0].ndim
     assert inputs_shapes[1] == ()
     return [inputs_shapes[0]]
示例#12
0
文件: sort.py 项目: Theano/Theano
 def infer_shape(self, node, inputs_shapes):
     if _variable_is_none(node.inputs[1]):
         # That means axis = None,
         # So the array is flattened before being sorted
         return [(mul(*inputs_shapes[0]),)]
     # axis should not be None
     # So there should be the same number of dimensions
     # in the input and output
     assert node.inputs[0].ndim == node.outputs[0].ndim
     assert inputs_shapes[1] == ()
     return [inputs_shapes[0]]
示例#13
0
 def infer_shape(self, node, inputs_shapes):
     if (isinstance(node.inputs[1], theano.Constant) and
         node.inputs[1].data is None):
         # That means axis = None,
         # So the array is flattened before being sorted
         return [(mul(*inputs_shapes[0]),)]
     # axis should not be None
     # So there should be the same number of dimensions
     # in the input and output
     assert node.inputs[0].ndim == node.outputs[0].ndim
     assert inputs_shapes[1] == ()
     return [inputs_shapes[0]]
示例#14
0
文件: sigm.py 项目: hamelphi/Theano
def local_sigm_times_exp(node):
    """
    exp(x)*sigm(-x) -> -sigm(x)
    """
    # this is a numerical stability thing, so we dont check clients
    if node.op == tensor.mul:
        exp_x = []
        exp_minus_x = []
        sigm_x = []
        sigm_minus_x = []
        other = []
        neg = False
        for i in node.inputs:
            while i.owner and i.owner.op == tensor.neg:
                neg ^= True
                i = i.owner.inputs[0]
            if i.owner and i.owner.op == tensor.exp:
                exp_arg = i.owner.inputs[0]
                if exp_arg.owner and exp_arg.owner.op == tensor.neg:
                    exp_minus_x.append(exp_arg.owner.inputs[0])
                else:
                    exp_x.append(exp_arg)
            elif i.owner and i.owner.op == sigmoid:
                sigm_arg = i.owner.inputs[0]
                if sigm_arg.owner and sigm_arg.owner.op == tensor.neg:
                    sigm_minus_x.append(sigm_arg.owner.inputs[0])
                else:
                    sigm_x.append(sigm_arg)
            else:
                other.append(i)

        # remove matched pairs in exp_x and sigm_minus_x
        did_something = False
        for i in exp_x:
            if i in sigm_minus_x:
                del sigm_minus_x[sigm_minus_x.index(i)]
                other.append(sigmoid(i))
                did_something = True
            else:
                other.append(i)

        # remove matched pairs in exp_minus_x and sigm_x
        for i in exp_minus_x:
            if i in sigm_x:
                del sigm_x[sigm_x.index(i)]
                other.append(sigm(-i))
                did_something = True
            else:
                other.append(i)
        if did_something:
            terms = other + [sigmoid(x) for x in sigm_x] \
                    + [sigmoid(-x) for x in sigm_minus_x]
            if len(terms)>1:
                rval = tensor.mul(*terms)
            else:
                rval = terms[0]

            if neg:
                return [-rval]
            else:
                return [rval]