def __init__(self, rng, srng, dropout_rate, input, d_in, d_out, W=None, b=None, activation=T.tanh): """ Apart from the `srng` and `dropout_rate`, the parameters are identical to those of `HiddenLayer`. """ super(DropoutHiddenLayer, self).__init__( rng=rng, input=input, d_in=d_in, d_out=d_out, W=W, b=b, activation=activation ) self.output = theano_utils.apply_dropout(srng, self.output, p=dropout_rate)
def __init__(self, rng, srng, dropout_rate, input, input_shape, filter_shape, pool_shape=(2, 2), activation=T.tanh, W=None, b=None): """ Apart from the `srng` and `dropout_rate`, the parameters are identical to those of `ConvMaxPoolLayer`. """ super(DropoutConvMaxPoolLayer, self).__init__( rng, input, input_shape, filter_shape, pool_shape, activation, W, b ) self.output = theano_utils.apply_dropout(srng, self.output, p=dropout_rate)
def __init__(self, rng, srng, dropout_rate, input, input_shape, filter_shape, pool_shape=(2, 2), activation=T.tanh, W=None, b=None): """ Apart from the `srng` and `dropout_rate`, the parameters are identical to those of `ConvMaxPoolLayer`. """ super(DropoutConvMaxPoolLayer, self).__init__(rng, input, input_shape, filter_shape, pool_shape, activation, W, b) self.output = theano_utils.apply_dropout(srng, self.output, p=dropout_rate)