示例#1
0
    def update_forcings_hydrodynamics(t_new):
        in_fn = (
            (1 - dirk22_factor) *
            eta_bc_const[int(t_new / options.timestep) - 1]) + (
                dirk22_factor * eta_bc_const[int(t_new / options.timestep)])
        eta_list.append(in_fn)

        #print(int(t_new/options.timestep))

        in_c.assign(in_fn)

        if np.round(t_new % options.timestep, 2) == 0.00:

            elev1 = (solver_obj.fields.solution_2d[2])

            in_fn = eta_bc_const[int(t_new / options.timestep)]
            eta_list.append(in_fn)

            in_c.assign(in_fn)

            wd_obs = th_adj.project(wd_obs_arr[int(t_new / dt)], P1_2d)

            # Record the simulated wetting and drying front
            wd_tmp = th_adj.project(
                heavyside_approx(-elev1 - h_static, wetting_alpha), P1_2d)
            wd.assign(wd_tmp)

            form = 0.5 * th_adj.inner(wd - wd_obs, wd - wd_obs) * th_adj.dx

            #form = 0.5*th_adj.inner(wd, wd)*th_adj.dx
            #print(J_mc)
            #J_list.append(th_adj.assemble(dt*scale*form))

            J_list.append(th_adj.assemble(scale * options.timestep * form))
示例#2
0
def forward_next(eta_bc_const, mesh2d, wd_obs_arr, scale, scale_return=False):
    def heavyside_approx(H, alpha):
        return 0.5 * (H / (th_adj.sqrt(H**2 + alpha**2))) + 0.5

    def update_forcings_hydrodynamics(t_new):
        in_fn = (
            (1 - dirk22_factor) *
            eta_bc_const[int(t_new / options.timestep) - 1]) + (
                dirk22_factor * eta_bc_const[int(t_new / options.timestep)])
        eta_list.append(in_fn)

        #print(int(t_new/options.timestep))

        in_c.assign(in_fn)

        if np.round(t_new % options.timestep, 2) == 0.00:

            elev1 = (solver_obj.fields.solution_2d[2])

            in_fn = eta_bc_const[int(t_new / options.timestep)]
            eta_list.append(in_fn)

            in_c.assign(in_fn)

            wd_obs = th_adj.project(wd_obs_arr[int(t_new / dt)], P1_2d)

            # Record the simulated wetting and drying front
            wd_tmp = th_adj.project(
                heavyside_approx(-elev1 - h_static, wetting_alpha), P1_2d)
            wd.assign(wd_tmp)

            form = 0.5 * th_adj.inner(wd - wd_obs, wd - wd_obs) * th_adj.dx

            #form = 0.5*th_adj.inner(wd, wd)*th_adj.dx
            #print(J_mc)
            #J_list.append(th_adj.assemble(dt*scale*form))

            J_list.append(th_adj.assemble(scale * options.timestep * form))
            #J_list.append(th_adj.assemble(options.timestep*form))

    wetting_and_drying = True
    ks = 0.025
    average_size = 200 * (10**(-6))
    t_end = 24 * 3600.
    friction = 'manning'
    friction_coef = 0.025
    diffusivity = 0.15
    viscosity = 10**(-6)
    dt = 600

    # choose directory to output results
    ts = time.time()
    st = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S')
    outputdir = 'outputs' + st

    # export interval in seconds
    t_export = np.round(t_end / 40, 0)

    th_adj.print_output('Exporting to ' + outputdir)

    #mesh2d = th_adj.Mesh('mesh.msh')#th_adj.RectangleMesh(12, 6, 13800, 7200)

    # define function spaces
    V = th_adj.FunctionSpace(mesh2d, 'CG', 2)
    P1_2d = th_adj.FunctionSpace(mesh2d, 'DG', 6)

    x, y = th_adj.SpatialCoordinate(mesh2d)

    max_depth = 5
    basin_x = 13800

    h_static = (1. - x / basin_x) * max_depth

    bathymetry_2d = th_adj.Function(V)
    bathymetry_2d.project((1. - x / basin_x) * max_depth)

    #elev1 = th_adj.Function(P1_2d).interpolate(th_adj.Constant(0.0))
    # define parameters
    #    ksp = th_adj.Constant(3*average_size)

    # initial condition: assign non-zero velocity
    elev_init = th_adj.Constant(0.01)
    uv_init = th_adj.Constant((10**(-4), 0.))

    wetting_alpha = 0.43

    #wd_obs_arr =[(th_adj.project(heavyside_approx(- elev_init - h_static, wetting_alpha), P1_2d, annotate = False))]
    wd_obs = th_adj.project(wd_obs_arr[0], P1_2d)  #, annotate = False)
    # Record the simulated wetting and drying front
    wd = th_adj.project(heavyside_approx(-elev_init - h_static, wetting_alpha),
                        P1_2d)
    eta_list = []
    J_list = []

    th_adj.parameters['form_compiler']['quadrature_degree'] = 20
    th_adj.parameters['form_compiler']['cpp_optimize'] = True
    th_adj.parameters['form_compiler'][
        'cpp_optimize_flags'] = '-O3 -ffast-math -march=native'
    th_adj.parameters['form_compiler']['optimize'] = True

    # set up solver
    solver_obj = th_adj.solver2d.FlowSolver2d(mesh2d, bathymetry_2d)
    options = solver_obj.options
    options.simulation_export_time = t_export
    options.simulation_end_time = t_end
    options.output_directory = outputdir
    options.norm_smoother = th_adj.Constant(0.43)
    options.check_volume_conservation_2d = True
    options.fields_to_export = ['uv_2d', 'elev_2d']
    options.solve_tracer = False
    options.use_lax_friedrichs_tracer = False
    if friction == 'nikuradse':
        options.quadratic_drag_coefficient = cfactor
    elif friction == 'manning':
        if friction_coef == 0:
            friction_coef = 0.02
        options.manning_drag_coefficient = th_adj.Constant(friction_coef)
    else:
        print('Undefined friction')

    # set horizontal diffusivity parameter
    options.horizontal_diffusivity = th_adj.Constant(diffusivity)
    if viscosity == None:
        print('no viscosity')
    else:
        options.horizontal_viscosity = th_adj.Constant(viscosity)

    # crank-nicholson used to integrate in time system of ODEs resulting from application of galerkin FEM
    options.timestepper_type = 'DIRK22'
    dirk22_factor = (2 - th_adj.sqrt(2)) / 2
    #options.timestepper_options.implicitness_theta = 0.5
    options.use_wetting_and_drying = wetting_and_drying
    options.wetting_and_drying_alpha = th_adj.Constant(wetting_alpha)

    if not hasattr(options.timestepper_options, 'use_automatic_timestep'):
        options.timestep = dt

    # set boundary conditions

    in_constant = eta_bc_const[0]

    in_c = th_adj.Constant(0.0)
    in_c.assign(in_constant)

    #in_c.assign(in_constant)
    swe_bnd = {}
    swe_bnd[1] = {'elev': in_c}

    solver_obj.bnd_functions['shallow_water'] = swe_bnd

    solver_obj.assign_initial_conditions(uv=uv_init, elev=elev_init)
    #solver_obj.assign_initial_conditions(uv = uv_init)

    solver_obj.iterate(update_forcings=update_forcings_hydrodynamics)

    regularisation_sum_init = sum([
        1 / (options.timestep) * ((eta_bc_const[i]) - eta_bc_const[i - 1])**2
        for i in range(1,
                       len(eta_bc_const) - int(2 * 60 * 60 / 600))
    ])

    regularisation_init = th_adj.AdjFloat(fac) * th_adj.AdjFloat(
        scale) * regularisation_sum_init

    #regularisation_init = fac * scale * sum([1/(options.timestep*len(th_adj.Function(R).dat.data[:]))*(th_adj.Function(R).assign(eta_bc_const[i])-th_adj.Function(R).assign(eta_bc_const[i-1]))**2*th_adj.dx for i in range(3, 10)])
    #regularisation_out = fac * scale * sum([1/(options.timestep*len(th_adj.Function(R).dat.data[:]))*(th_adj.Function(R).assign(eta_bc_const[i])-th_adj.Function(R).assign(eta_bc_const[i-1]))**2*th_adj.dx for i in range(len(eta_bc_const)-10, len(eta_bc_const)-3)])
    #import ipdb; ipdb.set_trace()
    J = sum(
        J_list) + regularisation_init  # + th_adj.assemble(regularisation_out)
    scale_tmp = th_adj.Constant(scale)
    if scale_return:
        return J, scale
    else:
        return J