def update_forcings_hydrodynamics(t_new): in_fn = ( (1 - dirk22_factor) * eta_bc_const[int(t_new / options.timestep) - 1]) + ( dirk22_factor * eta_bc_const[int(t_new / options.timestep)]) eta_list.append(in_fn) #print(int(t_new/options.timestep)) in_c.assign(in_fn) if np.round(t_new % options.timestep, 2) == 0.00: elev1 = (solver_obj.fields.solution_2d[2]) in_fn = eta_bc_const[int(t_new / options.timestep)] eta_list.append(in_fn) in_c.assign(in_fn) wd_obs = th_adj.project(wd_obs_arr[int(t_new / dt)], P1_2d) # Record the simulated wetting and drying front wd_tmp = th_adj.project( heavyside_approx(-elev1 - h_static, wetting_alpha), P1_2d) wd.assign(wd_tmp) form = 0.5 * th_adj.inner(wd - wd_obs, wd - wd_obs) * th_adj.dx #form = 0.5*th_adj.inner(wd, wd)*th_adj.dx #print(J_mc) #J_list.append(th_adj.assemble(dt*scale*form)) J_list.append(th_adj.assemble(scale * options.timestep * form))
def forward_next(eta_bc_const, mesh2d, wd_obs_arr, scale, scale_return=False): def heavyside_approx(H, alpha): return 0.5 * (H / (th_adj.sqrt(H**2 + alpha**2))) + 0.5 def update_forcings_hydrodynamics(t_new): in_fn = ( (1 - dirk22_factor) * eta_bc_const[int(t_new / options.timestep) - 1]) + ( dirk22_factor * eta_bc_const[int(t_new / options.timestep)]) eta_list.append(in_fn) #print(int(t_new/options.timestep)) in_c.assign(in_fn) if np.round(t_new % options.timestep, 2) == 0.00: elev1 = (solver_obj.fields.solution_2d[2]) in_fn = eta_bc_const[int(t_new / options.timestep)] eta_list.append(in_fn) in_c.assign(in_fn) wd_obs = th_adj.project(wd_obs_arr[int(t_new / dt)], P1_2d) # Record the simulated wetting and drying front wd_tmp = th_adj.project( heavyside_approx(-elev1 - h_static, wetting_alpha), P1_2d) wd.assign(wd_tmp) form = 0.5 * th_adj.inner(wd - wd_obs, wd - wd_obs) * th_adj.dx #form = 0.5*th_adj.inner(wd, wd)*th_adj.dx #print(J_mc) #J_list.append(th_adj.assemble(dt*scale*form)) J_list.append(th_adj.assemble(scale * options.timestep * form)) #J_list.append(th_adj.assemble(options.timestep*form)) wetting_and_drying = True ks = 0.025 average_size = 200 * (10**(-6)) t_end = 24 * 3600. friction = 'manning' friction_coef = 0.025 diffusivity = 0.15 viscosity = 10**(-6) dt = 600 # choose directory to output results ts = time.time() st = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S') outputdir = 'outputs' + st # export interval in seconds t_export = np.round(t_end / 40, 0) th_adj.print_output('Exporting to ' + outputdir) #mesh2d = th_adj.Mesh('mesh.msh')#th_adj.RectangleMesh(12, 6, 13800, 7200) # define function spaces V = th_adj.FunctionSpace(mesh2d, 'CG', 2) P1_2d = th_adj.FunctionSpace(mesh2d, 'DG', 6) x, y = th_adj.SpatialCoordinate(mesh2d) max_depth = 5 basin_x = 13800 h_static = (1. - x / basin_x) * max_depth bathymetry_2d = th_adj.Function(V) bathymetry_2d.project((1. - x / basin_x) * max_depth) #elev1 = th_adj.Function(P1_2d).interpolate(th_adj.Constant(0.0)) # define parameters # ksp = th_adj.Constant(3*average_size) # initial condition: assign non-zero velocity elev_init = th_adj.Constant(0.01) uv_init = th_adj.Constant((10**(-4), 0.)) wetting_alpha = 0.43 #wd_obs_arr =[(th_adj.project(heavyside_approx(- elev_init - h_static, wetting_alpha), P1_2d, annotate = False))] wd_obs = th_adj.project(wd_obs_arr[0], P1_2d) #, annotate = False) # Record the simulated wetting and drying front wd = th_adj.project(heavyside_approx(-elev_init - h_static, wetting_alpha), P1_2d) eta_list = [] J_list = [] th_adj.parameters['form_compiler']['quadrature_degree'] = 20 th_adj.parameters['form_compiler']['cpp_optimize'] = True th_adj.parameters['form_compiler'][ 'cpp_optimize_flags'] = '-O3 -ffast-math -march=native' th_adj.parameters['form_compiler']['optimize'] = True # set up solver solver_obj = th_adj.solver2d.FlowSolver2d(mesh2d, bathymetry_2d) options = solver_obj.options options.simulation_export_time = t_export options.simulation_end_time = t_end options.output_directory = outputdir options.norm_smoother = th_adj.Constant(0.43) options.check_volume_conservation_2d = True options.fields_to_export = ['uv_2d', 'elev_2d'] options.solve_tracer = False options.use_lax_friedrichs_tracer = False if friction == 'nikuradse': options.quadratic_drag_coefficient = cfactor elif friction == 'manning': if friction_coef == 0: friction_coef = 0.02 options.manning_drag_coefficient = th_adj.Constant(friction_coef) else: print('Undefined friction') # set horizontal diffusivity parameter options.horizontal_diffusivity = th_adj.Constant(diffusivity) if viscosity == None: print('no viscosity') else: options.horizontal_viscosity = th_adj.Constant(viscosity) # crank-nicholson used to integrate in time system of ODEs resulting from application of galerkin FEM options.timestepper_type = 'DIRK22' dirk22_factor = (2 - th_adj.sqrt(2)) / 2 #options.timestepper_options.implicitness_theta = 0.5 options.use_wetting_and_drying = wetting_and_drying options.wetting_and_drying_alpha = th_adj.Constant(wetting_alpha) if not hasattr(options.timestepper_options, 'use_automatic_timestep'): options.timestep = dt # set boundary conditions in_constant = eta_bc_const[0] in_c = th_adj.Constant(0.0) in_c.assign(in_constant) #in_c.assign(in_constant) swe_bnd = {} swe_bnd[1] = {'elev': in_c} solver_obj.bnd_functions['shallow_water'] = swe_bnd solver_obj.assign_initial_conditions(uv=uv_init, elev=elev_init) #solver_obj.assign_initial_conditions(uv = uv_init) solver_obj.iterate(update_forcings=update_forcings_hydrodynamics) regularisation_sum_init = sum([ 1 / (options.timestep) * ((eta_bc_const[i]) - eta_bc_const[i - 1])**2 for i in range(1, len(eta_bc_const) - int(2 * 60 * 60 / 600)) ]) regularisation_init = th_adj.AdjFloat(fac) * th_adj.AdjFloat( scale) * regularisation_sum_init #regularisation_init = fac * scale * sum([1/(options.timestep*len(th_adj.Function(R).dat.data[:]))*(th_adj.Function(R).assign(eta_bc_const[i])-th_adj.Function(R).assign(eta_bc_const[i-1]))**2*th_adj.dx for i in range(3, 10)]) #regularisation_out = fac * scale * sum([1/(options.timestep*len(th_adj.Function(R).dat.data[:]))*(th_adj.Function(R).assign(eta_bc_const[i])-th_adj.Function(R).assign(eta_bc_const[i-1]))**2*th_adj.dx for i in range(len(eta_bc_const)-10, len(eta_bc_const)-3)]) #import ipdb; ipdb.set_trace() J = sum( J_list) + regularisation_init # + th_adj.assemble(regularisation_out) scale_tmp = th_adj.Constant(scale) if scale_return: return J, scale else: return J