def test_expand_one(self, hbar, tol): """Test that displacement vectors are created correctly""" alpha = 1.4 + 3.7 * 1j mode = 4 N = 10 r = symplectic.expand_vector(alpha, mode, N, hbar) expected = np.zeros([2 * N]) expected[mode] = np.sqrt(2 * hbar) * alpha.real expected[mode + N] = np.sqrt(2 * hbar) * alpha.imag assert np.allclose(r, expected, atol=tol, rtol=0)
def displace(self, r, phi, i): r"""Displace mode ``i`` by the amount ``r*np.exp(1j*phi)``. Args: r (float): displacement magnitude phi (float): displacement phase i (int): mode to be displaced Raises: ValueError: if the mode is not in the list of active modes """ if self.active[i] is None: raise ValueError( "Cannot displace mode, as the mode does not exist.") self.means += symp.expand_vector(r * np.exp(1j * phi), i, self.nlen)[self.from_xp]
def compile(self, seq, registers): """Try to arrange a quantum circuit into the canonical Symplectic form. This method checks whether the circuit can be implemented as a sequence of Gaussian operations. If the answer is yes it arranges them in the canonical order with displacement at the end. Args: seq (Sequence[Command]): quantum circuit to modify registers (Sequence[RegRefs]): quantum registers Returns: List[Command]: modified circuit Raises: CircuitError: the circuit does not correspond to a Gaussian unitary """ # Check which modes are actually being used used_modes = [] for operations in seq: modes = [modes_label.ind for modes_label in operations.reg] used_modes.append(modes) # pylint: disable=consider-using-set-comprehension used_modes = list( set([item for sublist in used_modes for item in sublist])) # dictionary mapping the used modes to consecutive non-negative integers dict_indices = {used_modes[i]: i for i in range(len(used_modes))} nmodes = len(used_modes) # This is the identity transformation in phase-space, multiply by the identity and add zero Snet = np.identity(2 * nmodes) rnet = np.zeros(2 * nmodes) # Now we will go through each operation in the sequence `seq` and apply it in quadrature space # We will keep track of the net transforation in the Symplectic matrix `Snet` and the quadrature # vector `rnet`. for operations in seq: name = operations.op.__class__.__name__ params = par_evaluate(operations.op.p) modes = [modes_label.ind for modes_label in operations.reg] if name == "Dgate": rnet = rnet + expand_vector( params[0] * (np.exp(1j * params[1])), dict_indices[modes[0]], nmodes) else: if name == "Rgate": S = expand(rotation(params[0]), dict_indices[modes[0]], nmodes) elif name == "Sgate": S = expand(squeezing(params[0], params[1]), dict_indices[modes[0]], nmodes) elif name == "S2gate": S = expand( two_mode_squeezing(params[0], params[1]), [dict_indices[modes[0]], dict_indices[modes[1]]], nmodes, ) elif name == "Interferometer": S = expand(interferometer(params[0]), [dict_indices[mode] for mode in modes], nmodes) elif name == "GaussianTransform": S = expand(params[0], [dict_indices[mode] for mode in modes], nmodes) elif name == "BSgate": S = expand( beam_splitter(params[0], params[1]), [dict_indices[modes[0]], dict_indices[modes[1]]], nmodes, ) elif name == "MZgate": v = np.exp(1j * params[0]) u = np.exp(1j * params[1]) U = 0.5 * np.array([[u * (v - 1), 1j * (1 + v)], [1j * u * (1 + v), 1 - v]]) S = expand( interferometer(U), [dict_indices[modes[0]], dict_indices[modes[1]]], nmodes, ) Snet = S @ Snet rnet = S @ rnet # Having obtained the net displacement we simply convert it into complex notation alphas = 0.5 * (rnet[0:nmodes] + 1j * rnet[nmodes:2 * nmodes]) # And now we just pass the net transformation as a big Symplectic operation plus displacements ord_reg = [r for r in list(registers) if r.ind in used_modes] ord_reg = sorted(list(ord_reg), key=lambda x: x.ind) if np.allclose(Snet, np.identity(2 * nmodes)): A = [] else: A = [Command(ops.GaussianTransform(Snet), ord_reg)] B = [ Command(ops.Dgate(np.abs(alphas[i]), np.angle(alphas[i])), ord_reg[i]) for i in range(len(ord_reg)) if not np.allclose(alphas[i], 0.0) ] return A + B