def test_Vertices_Nonsym(self): """Tests the vertices of a nonsymetric space.""" self.k = numpy.matrix([[6], [12], [2], [10]]) self.p = polytope.HPolytope(self.H, self.k) vertices = self.p.Vertices() self.AreVertices(self.p, vertices) self.HasSamePoints( numpy.matrix([[6., 2.], [6., -10.], [-12., -10.], [-12., 2.]]), vertices)
def test_Skewed_Nonsym_Vertices(self): """Tests the vertices of a severely skewed space.""" self.H = numpy.matrix([[10, -1], [-1, -1], [-1, 10], [10, 10]]) self.k = numpy.matrix([[2], [2], [2], [2]]) self.p = polytope.HPolytope(self.H, self.k) vertices = self.p.Vertices() self.AreVertices(self.p, vertices) self.HasSamePoints( numpy.matrix([[0., 0.2], [0.2, 0.], [-2., 0.], [0., -2.]]), vertices)
def __init__(self): self.drivetrain_low_low = VelocityDrivetrainModel( left_low=True, right_low=True, name='VelocityDrivetrainLowLow') self.drivetrain_low_high = VelocityDrivetrainModel(left_low=True, right_low=False, name='VelocityDrivetrainLowHigh') self.drivetrain_high_low = VelocityDrivetrainModel(left_low=False, right_low=True, name = 'VelocityDrivetrainHighLow') self.drivetrain_high_high = VelocityDrivetrainModel(left_low=False, right_low=False, name = 'VelocityDrivetrainHighHigh') # X is [lvel, rvel] self.X = numpy.matrix( [[0.0], [0.0]]) self.U_poly = polytope.HPolytope( numpy.matrix([[1, 0], [-1, 0], [0, 1], [0, -1]]), numpy.matrix([[12], [12], [12], [12]])) self.U_max = numpy.matrix( [[12.0], [12.0]]) self.U_min = numpy.matrix( [[-12.0000000000], [-12.0000000000]]) self.dt = 0.005 self.R = numpy.matrix( [[0.0], [0.0]]) self.U_ideal = numpy.matrix( [[0.0], [0.0]]) # ttrust is the comprimise between having full throttle negative inertia, # and having no throttle negative inertia. A value of 0 is full throttle # inertia. A value of 1 is no throttle negative inertia. self.ttrust = 1.0 self.left_gear = VelocityDrivetrain.LOW self.right_gear = VelocityDrivetrain.LOW self.left_shifter_position = 0.0 self.right_shifter_position = 0.0 self.left_cim = drivetrain.CIM() self.right_cim = drivetrain.CIM()
def setUp(self): """Builds a simple box polytope.""" self.H = numpy.matrix([[1, 0], [-1, 0], [0, 1], [0, -1]]) self.k = numpy.matrix([[12], [12], [12], [12]]) self.p = polytope.HPolytope(self.H, self.k)
def MakePWithDims(self, num_constraints, num_dims): """Makes a zeroed out polytope with the correct size.""" self.p = polytope.HPolytope( numpy.matrix(numpy.zeros((num_constraints, num_dims))), numpy.matrix(numpy.zeros((num_constraints, 1))))
def DoCoerceGoal(region, K, w, R): if region.IsInside(R): return (R, True) perpendicular_vector = K.T / numpy.linalg.norm(K) parallel_vector = numpy.matrix([[perpendicular_vector[1, 0]], [-perpendicular_vector[0, 0]]]) # We want to impose the constraint K * X = w on the polytope H * X <= k. # We do this by breaking X up into parallel and perpendicular components to # the half plane. This gives us the following equation. # # parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) = X # # Then, substitute this into the polytope. # # H * (parallel * (parallel.T \dot X) + perpendicular * (perpendicular \dot X)) <= k # # Substitute K * X = w # # H * parallel * (parallel.T \dot X) + H * perpendicular * w <= k # # Move all the knowns to the right side. # # H * parallel * ([parallel1 parallel2] * X) <= k - H * perpendicular * w # # Let t = parallel.T \dot X, the component parallel to the surface. # # H * parallel * t <= k - H * perpendicular * w # # This is a polytope which we can solve, and use to figure out the range of X # that we care about! t_poly = polytope.HPolytope( region.H * parallel_vector, region.k - region.H * perpendicular_vector * w) vertices = t_poly.Vertices() if vertices.shape[0]: # The region exists! # Find the closest vertex min_distance = numpy.infty closest_point = None for vertex in vertices: point = parallel_vector * vertex + perpendicular_vector * w length = numpy.linalg.norm(R - point) if length < min_distance: min_distance = length closest_point = point return (closest_point, True) else: # Find the vertex of the space that is closest to the line. region_vertices = region.Vertices() min_distance = numpy.infty closest_point = None for vertex in region_vertices: point = vertex.T length = numpy.abs((perpendicular_vector.T * point)[0, 0]) if length < min_distance: min_distance = length closest_point = point return (closest_point, False)
def Update(self, throttle, steering): # Shift into the gear which sends the most power to the floor. # This is the same as sending the most torque down to the floor at the # wheel. self.left_gear = self.right_gear = True if True: self.left_gear = self.ComputeGear(self.X[0, 0], should_print=True, current_gear=self.left_gear, gear_name="left") self.right_gear = self.ComputeGear(self.X[1, 0], should_print=True, current_gear=self.right_gear, gear_name="right") if self.IsInGear(self.left_gear): self.left_cim.X[0, 0] = self.MotorRPM(self.left_shifter_position, self.X[0, 0]) if self.IsInGear(self.right_gear): self.right_cim.X[0, 0] = self.MotorRPM(self.right_shifter_position, self.X[0, 0]) if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear): # Filter the throttle to provide a nicer response. fvel = self.FilterVelocity(throttle) # Constant radius means that angualar_velocity / linear_velocity = constant. # Compute the left and right velocities. steering_velocity = numpy.abs(fvel) * steering left_velocity = fvel - steering_velocity right_velocity = fvel + steering_velocity # Write this constraint in the form of K * R = w # angular velocity / linear velocity = constant # (left - right) / (left + right) = constant # left - right = constant * left + constant * right # (fvel - steering * numpy.abs(fvel) - fvel - steering * numpy.abs(fvel)) / # (fvel - steering * numpy.abs(fvel) + fvel + steering * numpy.abs(fvel)) = # constant # (- 2 * steering * numpy.abs(fvel)) / (2 * fvel) = constant # (-steering * sign(fvel)) = constant # (-steering * sign(fvel)) * (left + right) = left - right # (steering * sign(fvel) + 1) * left + (steering * sign(fvel) - 1) * right = 0 equality_k = numpy.matrix( [[1 + steering * numpy.sign(fvel), -(1 - steering * numpy.sign(fvel))]]) equality_w = 0.0 self.R[0, 0] = left_velocity self.R[1, 0] = right_velocity # Construct a constraint on R by manipulating the constraint on U # Start out with H * U <= k # U = FF * R + K * (R - X) # H * (FF * R + K * R - K * X) <= k # H * (FF + K) * R <= k + H * K * X R_poly = polytope.HPolytope( self.U_poly.H * (self.CurrentDrivetrain().K + self.CurrentDrivetrain().FF), self.U_poly.k + self.U_poly.H * self.CurrentDrivetrain().K * self.X) # Limit R back inside the box. self.boxed_R = CoerceGoal(R_poly, equality_k, equality_w, self.R) FF_volts = self.CurrentDrivetrain().FF * self.boxed_R self.U_ideal = self.CurrentDrivetrain().K * (self.boxed_R - self.X) + FF_volts else: glog.debug('Not all in gear') if not self.IsInGear(self.left_gear) and not self.IsInGear(self.right_gear): # TODO(austin): Use battery volts here. R_left = self.MotorRPM(self.left_shifter_position, self.X[0, 0]) self.U_ideal[0, 0] = numpy.clip( self.left_cim.K * (R_left - self.left_cim.X) + R_left / self.left_cim.Kv, self.left_cim.U_min, self.left_cim.U_max) self.left_cim.Update(self.U_ideal[0, 0]) R_right = self.MotorRPM(self.right_shifter_position, self.X[1, 0]) self.U_ideal[1, 0] = numpy.clip( self.right_cim.K * (R_right - self.right_cim.X) + R_right / self.right_cim.Kv, self.right_cim.U_min, self.right_cim.U_max) self.right_cim.Update(self.U_ideal[1, 0]) else: assert False self.U = numpy.clip(self.U_ideal, self.U_min, self.U_max) # TODO(austin): Model the robot as not accelerating when you shift... # This hack only works when you shift at the same time. if self.IsInGear(self.left_gear) and self.IsInGear(self.right_gear): self.X = self.CurrentDrivetrain().A * self.X + self.CurrentDrivetrain().B * self.U self.left_gear, self.left_shifter_position = self.SimShifter( self.left_gear, self.left_shifter_position) self.right_gear, self.right_shifter_position = self.SimShifter( self.right_gear, self.right_shifter_position) glog.debug('U is %s %s', str(self.U[0, 0]), str(self.U[1, 0])) glog.debug('Left shifter %s %d Right shifter %s %d', self.left_gear, self.left_shifter_position, self.right_gear, self.right_shifter_position)