示例#1
0
#coding=utf-8
import tensorflow as tf
from thirdparty.registry import Registry
import wmodule

_TOTAL_SKIPPED = 0

ROI_KEYPOINT_HEAD_REGISTRY = Registry("ROI_KEYPOINT_HEAD")
ROI_KEYPOINT_HEAD_REGISTRY.__doc__ = """
Registry for keypoint heads, which make keypoint predictions from per-region features.

The registered object will be called with `obj(cfg, input_shape)`.
"""


def build_keypoint_head(cfg, *args, **kwargs):
    """
    Build a keypoint head from `cfg.MODEL.ROI_KEYPOINT_HEAD.NAME`.
    """
    name = cfg.MODEL.ROI_KEYPOINT_HEAD.NAME
    return ROI_KEYPOINT_HEAD_REGISTRY.get(name)(cfg, *args, **kwargs)


def keypoint_rcnn_loss(pred_keypoint_logits, instances, normalizer):
    """
    Arguments:
        pred_keypoint_logits (Tensor): A tensor of shape (N, K, S, S) where N is the total number
            of instances in the batch, K is the number of keypoints, and S is the side length
            of the keypoint heatmap. The values are spatial logits.
        instances (list[Instances]): A list of M Instances, where M is the batch size.
            These instances are predictions from the model
示例#2
0
from thirdparty.registry import Registry
REINFORCE_REGISTRY = Registry("REINFORCE_REGISTRY")
示例#3
0
from thirdparty.registry import Registry

SEMANTIC_HEAD = Registry("SEMANTIC_HEAD")


def build_semantic_head(name, *args, **kwargs):
    head = SEMANTIC_HEAD.get(name)(*args, **kwargs)
    return head
示例#4
0
文件: rpn.py 项目: vghost2008/wml
from thirdparty.registry import Registry
import wmodule
from .build import PROPOSAL_GENERATOR_REGISTRY
from object_detection2.modeling.anchor_generator import *
from object_detection2.modeling.box_regression import *
from .rpn_outputs import find_top_rpn_proposals
from object_detection2.datadef import *
import wsummary
from object_detection2.modeling.build import build_outputs
from object_detection2.modeling.build_matcher import build_matcher
import object_detection2.od_toolkit as odtk
from object_detection2.modeling.backbone.build import build_hook_by_name

slim = tf.contrib.slim

RPN_HEAD_REGISTRY = Registry("RPN_HEAD")


def build_rpn_head(cfg, *args, **kwargs):
    """
    Build an RPN head defined by `cfg.MODEL.RPN.HEAD_NAME`.
    """
    name = cfg.MODEL.RPN.HEAD_NAME
    return RPN_HEAD_REGISTRY.get(name)(cfg, *args, **kwargs)


@RPN_HEAD_REGISTRY.register()
class StandardRPNHead(wmodule.WChildModule):
    def __init__(self, cfg, parent, *args, **kwargs):
        super().__init__(cfg, parent, *args, **kwargs)
        self.anchor_generator = build_anchor_generator(cfg,
示例#5
0
from thirdparty.registry import Registry

KEYPOINTS_HEAD = Registry("KeyPointsHead")


def build_keypoints_head(name, *args, **kwargs):
    return KEYPOINTS_HEAD.get(name)(*args, **kwargs)
示例#6
0
from thirdparty.registry import Registry

MATCHER = Registry("MATCHER")  # noqa F401 isort:skip


def build_matcher(name, *args, **kwargs):
    return MATCHER.get(name)(*args, **kwargs)
示例#7
0
from thirdparty.registry import Registry

HEAD_OUTPUTS = Registry("HEAD_OUTPUTS")


def build_outputs(name, *args, **kwargs):
    outputs = HEAD_OUTPUTS.get(name)(*args, **kwargs)
    return outputs
示例#8
0
文件: build.py 项目: vghost2008/wml
from thirdparty.registry import Registry
from object_detection2.modeling.build import HEAD_OUTPUTS as _HEAD_OUTPUTS
from object_detection2.modeling.build import build_outputs as _build_outputs
from wmodule import WModelList

HEAD_OUTPUTS = _HEAD_OUTPUTS
ROI_HEADS_HOOK = Registry("ROI_HEADS_HOOK")
ROI_HEADS_REGISTRY = Registry("ROI_HEADS")
ROI_HEADS_REGISTRY.__doc__ = """
Registry for ROI heads in a generalized R-CNN model.
ROIHeads take feature maps and region proposals, and
perform per-region computation.

The registered object will be called with `obj(cfg, input_shape)`.
The call is expected to return an :class:`ROIHeads`.
"""
ROI_BOX_HEAD_REGISTRY = Registry("ROI_BOX_HEAD")
ROI_BOX_HEAD_REGISTRY.__doc__ = """
Registry for box heads, which make box predictions from per-region features.

The registered object will be called with `obj(cfg, input_shape)`.
"""
ROI_BOX_HEAD_OUTPUTS_LAYER_REGISTRY = Registry("ROI_BOX_HEAD_OUTPUTS_LAYER")


def build_roi_heads_hook(cfg, *args, **kwargs):
    name = cfg.MODEL.ROI_HEADS.HOOK
    if len(name) > 0:
        if ";" in name:
            names = name.split(';')
            models = []
示例#9
0
#coding=utf-8
from thirdparty.registry import Registry

PROPOSAL_GENERATOR_REGISTRY = Registry("PROPOSAL_GENERATOR")
'''
Proposal的输入为backborn的输出,输出为outdata(key:PD_BOXES [B,N,4], key:PD_PROBABILITY可选[B,N]), loss
'''


def build_proposal_generator(cfg, *args, **kwargs):
    """
    Build a proposal generator from `cfg.MODEL.PROPOSAL_GENERATOR.NAME`.
    The name can be "PrecomputedProposals" to use no proposal generator.
    """
    name = cfg.MODEL.PROPOSAL_GENERATOR.NAME
    if name == "PrecomputedProposals":
        return None

    return PROPOSAL_GENERATOR_REGISTRY.get(name)(cfg, *args, **kwargs)


def build_proposal_generator_by_name(name, cfg, *args, **kwargs):
    """
    Build a proposal generator from `cfg.MODEL.PROPOSAL_GENERATOR.NAME`.
    The name can be "PrecomputedProposals" to use no proposal generator.
    """
    if name == "PrecomputedProposals":
        return None

    return PROPOSAL_GENERATOR_REGISTRY.get(name)(cfg, *args, **kwargs)
示例#10
0
#coding=utf-8
from thirdparty.registry import Registry
import wmodule
import wml_tfutils as wmlt
import tensorflow as tf
import wsummary
from object_detection2.datadef import *
from collections import Iterable
import math
import numpy as np

ANCHOR_GENERATOR_REGISTRY = Registry("ANCHOR_GENERATOR")


def build_anchor_generator(cfg, *args, **kwargs):
    """
    Built an anchor generator from `cfg.MODEL.ANCHOR_GENERATOR.NAME`.
    """
    anchor_generator = cfg.MODEL.ANCHOR_GENERATOR.NAME
    return ANCHOR_GENERATOR_REGISTRY.get(anchor_generator)(*args,
                                                           cfg=cfg,
                                                           **kwargs)


class AnchorGeneratorF(object):
    def __init__(self, scales, aspect_ratios):
        self.scales = scales
        self.aspect_ratios = aspect_ratios
        self.cell_anchors = self.get_cell_anchors()

    def get_cell_anchors(self):
示例#11
0
from thirdparty.registry import Registry
import numpy as np
from iotoolkit.coco_toolkit import *
from object_detection2.standard_names import *

FILTER_REGISTRY = Registry("Filter")


def build_filter(name):
    return FILTER_REGISTRY.get(name)


@FILTER_REGISTRY.register()
def coco2017_balance_sample(x):
    threshold = 1.0
    labels = x[GT_LABELS]
    freq = tf.gather(COMPRESSED_ID_TO_FREQ, labels)
    print(COMPRESSED_ID_TO_FREQ)
    freq = tf.reduce_min(freq)
    v = threshold / (freq + 1e-8)
    p = tf.random_uniform(shape=(), minval=0, maxval=1)
    return tf.less_equal(p, v)


@FILTER_REGISTRY.register()
def coco2014_balance_sample(x):
    threshold = 1.0
    labels = x[GT_LABELS]
    freq = tf.gather(ID_TO_FREQ, labels)
    print(ID_TO_FREQ)
    freq = tf.reduce_min(freq)
示例#12
0
文件: build.py 项目: vghost2008/wml
from thirdparty.registry import Registry
from .backbone import Backbone

BACKBONE_REGISTRY = Registry("BACKBONE")
BACKBONE_HOOK_REGISTRY = Registry("BACKBONE_HOOK")
BACKBONE_REGISTRY.__doc__ = """
Registry for backbones, which extract feature maps from images

The registered object must be a callable that accepts two arguments:

1. A :class:`config.CfgNode`
2. A :class:`layers.ShapeSpec`, which contains the input shape specification.

It must returns an instance of :class:`Backbone`.
"""


def build_backbone(cfg, *args,**kwargs):
    """
    Build a backbone from `cfg.MODEL.BACKBONE.NAME`.

    Returns:
        an instance of :class:`Backbone`
    """
    backbone_name = cfg.MODEL.BACKBONE.NAME
    backbone = BACKBONE_REGISTRY.get(backbone_name)(cfg,*args,**kwargs)
    assert isinstance(backbone, Backbone)
    return backbone

def build_backbone_by_name(backbone_name,cfg,*args,**kwargs):
    """
示例#13
0
from thirdparty.registry import Registry

RETINANET_HEAD = Registry("RetinaNetHead")
ONESTAGE_HEAD = Registry("OneStageHead")


def build_retinanet_head(name, *args, **kwargs):
    return RETINANET_HEAD.get(name)(*args, **kwargs)


def build_onestage_head(name, *args, **kwargs):
    return ONESTAGE_HEAD.get(name)(*args, **kwargs)
示例#14
0
from thirdparty.registry import Registry
DATAPROCESS_REGISTRY = Registry("DATAPROCESS")
示例#15
0
from thirdparty.registry import Registry
import wmodule
import tensorflow as tf
import wml_tfutils as wmlt
from object_detection2.datadef import *
import object_detection2.config.config as config
import image_visualization as ivis
import wsummary
import img_utils as wmli
import object_detection2.od_toolkit as odt
import basic_tftools as btf
from basic_tftools import channel as get_channel

slim = tf.contrib.slim

ROI_MASK_HEAD_REGISTRY = Registry("ROI_MASK_HEAD")
ROI_MASK_HEAD_REGISTRY.__doc__ = """
Registry for mask heads, which predicts instance masks given
per-region features.

The registered object will be called with `obj(cfg, input_shape)`.
"""


@wmlt.add_name_scope
def mask_rcnn_loss(inputs,
                   pred_mask_logits,
                   proposals: EncodedData,
                   fg_selection_mask,
                   log=True):
    '''
示例#16
0
文件: build.py 项目: vghost2008/wml
from thirdparty.registry import Registry

MOT_REGISTRY = Registry("MOT")


def build_mot(cfg, model, *args, **kwargs):
    name = cfg.MODEL.MOT.NAME
    mot = MOT_REGISTRY.get(name)(model, *args, **kwargs)
    return mot
示例#17
0
文件: build.py 项目: vghost2008/wml
from thirdparty.registry import Registry

MOT_HEAD = Registry("MOTHEADS")


def build_MOT_head(name, *args, **kwargs):
    return MOT_HEAD.get(name)(*args, **kwargs)
示例#18
0
文件: build.py 项目: vghost2008/wml
from thirdparty.registry import Registry

META_ARCH_REGISTRY = Registry("META_ARCH")  # noqa F401 isort:skip


def build_model(cfg, **kwargs):
    """
    Build the whole model architecture, defined by ``cfg.MODEL.META_ARCHITECTURE``.
    Note that it does not load any weights from ``cfg``.
    """
    meta_arch = cfg.MODEL.META_ARCHITECTURE
    return META_ARCH_REGISTRY.get(meta_arch)(cfg, **kwargs)