示例#1
0
    def run(self, state: State) -> None:
        """Add release information to justification for selected packages."""
        justification_addition = []
        for resolved_package_tuple in state.resolved_dependencies.values():
            conf_matched = self._conf_map.get(resolved_package_tuple[0])
            if not conf_matched:
                continue

            version = conf_matched["package_version"].get("version")
            if version is not None and resolved_package_tuple[
                    1] not in SpecifierSet(version):
                continue

            index_url = conf_matched["package_version"].get("index_url")
            if index_url is not None and resolved_package_tuple[2] != index_url:
                continue

            justification_addition.append({
                "type":
                "INFO",
                "message":
                f"Release notes for package {resolved_package_tuple[0]!r}",
                "link":
                self._construct_release_notes_url(
                    organization=conf_matched["organization"],
                    repository=conf_matched["repository"],
                    tag_version_prefix=conf_matched.get("tag_version_prefix"),
                    locked_version=resolved_package_tuple[1],
                ),
            })

        state.add_justification(justification_addition)
示例#2
0
    def test_add_state_order_single(self) -> None:
        """Test adding states to beam and order during addition when score is same - iteration is relevant."""
        beam = Beam(width=1)

        state01 = State(
            score=0.0,
            latest_version_offset=0,
            iteration=1,
            iteration_states_added=0,
        )
        state01.add_justification([{"state": "01"}])
        beam.add_state(state01)

        state02 = State(
            score=0.0,
            latest_version_offset=0,
            iteration=0,
            iteration_states_added=0,
        )
        state02.add_justification([{"state": "02"}])
        beam.add_state(state02)

        assert list(beam.iter_states()) == [state01]
        assert list(beam.iter_states_sorted(reverse=True)) == [state01]
        assert list(beam.iter_states_sorted(reverse=False)) == [state01]
示例#3
0
    def run(self, state: State) -> None:
        """Add release information to justification for selected packages."""
        justification_addition = []
        for resolved_package_tuple in state.resolved_dependencies.values():
            conf_package_version = self.configuration["package_version"]
            if not conf_package_version or resolved_package_tuple[
                    0] != conf_package_version["name"]:
                continue

            version = conf_package_version.get("version")
            if version is not None and resolved_package_tuple[
                    1] not in SpecifierSet(version):
                continue

            develop = conf_package_version.get("develop")
            if develop is not None:
                package_version = self.context.get_package_version(
                    resolved_package_tuple)
                if not package_version:
                    # This is a programming error as the give dependency has to be registered in the context.
                    _LOGGER.error(
                        "No matching package version for %r registered in the context",
                        resolved_package_tuple)
                    continue

                if package_version.develop != develop:
                    continue

            index_url = conf_package_version.get("index_url")
            if not self._index_url_check(index_url, resolved_package_tuple[2]):
                continue

            if self._configuration["prescription"]["run"]:
                # Can happen if prescription states criteria that match multiple times. We add
                # justification only once in such cases.
                continue

            self._configuration["prescription"]["run"] = True

            release_notes_conf = self.configuration["release_notes"]
            justification_addition.append({
                "type":
                "INFO",
                "message":
                f"Release notes for package {resolved_package_tuple[0]!r}",
                "link":
                self._construct_release_notes_url(
                    organization=release_notes_conf["organization"],
                    repository=release_notes_conf["repository"],
                    tag_version_prefix=release_notes_conf.get(
                        "tag_version_prefix"),
                    locked_version=resolved_package_tuple[1],
                ),
                "package_name":
                resolved_package_tuple[0],
            })

        state.add_justification(justification_addition)
示例#4
0
 def test_justification(self, final_state: State) -> None:
     """Test manipulation with state justification."""
     assert final_state.justification == [{"foo": "bar"}]
     final_state.add_justification([{"hello": "thoth"}])
     assert final_state.justification == [{
         "foo": "bar"
     }, {
         "hello": "thoth"
     }]
示例#5
0
def final_state() -> State:
    """A fixture for a final state."""
    state = State(
        score=0.5,
        resolved_dependencies=OrderedDict(
            {"daiquiri": ("daiquiri", "1.6.0", "https://pypi.org/simple")}),
        unresolved_dependencies=OrderedDict(),
        advised_runtime_environment=None,
    )
    state.add_justification([{"foo": "bar"}])
    return state
示例#6
0
def final_state() -> State:  # noqa: D401
    """A fixture for a final state."""
    state = State(
        score=0.5,
        resolved_dependencies={
            "daiquiri": ("daiquiri", "1.6.0", "https://pypi.org/simple")
        },
        unresolved_dependencies={},
        advised_runtime_environment=None,
    )
    state.add_justification(AdviserTestCase.JUSTIFICATION_SAMPLE_1)
    return state
示例#7
0
    def test_run_justification_noop(self) -> None:
        """Test no operation when justification is present."""
        state = State()
        assert not state.justification

        state.add_justification([{"type": "INFO", "message": "Foo bar"}])

        unit = NoObservationWrap()
        unit.run(state)

        assert len(state.justification) == 1
        assert set(state.justification[0].keys()) == {"type", "message"}
示例#8
0
文件: wrap.py 项目: tlegen-k/adviser
    def run(self, state: State) -> None:
        """Run main entry-point for wrap units to filter and score packages."""
        if not self._run_state(state):
            return None

        justification = self.run_prescription.get("justification")
        if justification:
            state.add_justification(justification)

        advised_manifest_changes = self.run_prescription.get(
            "advised_manifest_changes")
        if advised_manifest_changes:
            state.advised_manifest_changes.append(advised_manifest_changes)

        self._run_base()
示例#9
0
def state() -> State:
    """A fixture for a non-final state."""
    state = State(
        score=0.1,
        unresolved_dependencies=OrderedDict(
            {"flask": ("flask", "1.1.1", "https://pypi.org/simple")}
        ),
        resolved_dependencies=OrderedDict(
            {"hexsticker": ("hexsticker", "1.0.0", "https://pypi.org/simple")}
        ),
        advised_runtime_environment=RuntimeEnvironment.from_dict(
            {"python_version": "3.6"}
        ),
    )
    state.add_justification([{"foo": "bar"}, {"bar": "baz"}])
    return state
示例#10
0
def _get_state() -> State:
    """Create a fixture for a non-final state."""
    unresolved_dependency = ("flask", "1.1.1", "https://pypi.org/simple")
    unresolved_dependencies = {
        id(unresolved_dependency): unresolved_dependency
    }
    state = State(
        score=0.1,
        unresolved_dependencies={"flask": unresolved_dependencies},
        resolved_dependencies={
            "hexsticker": ("hexsticker", "1.0.0", "https://pypi.org/simple")
        },
        advised_runtime_environment=RuntimeEnvironment.from_dict(
            {"python_version": "3.6"}),
    )
    state.add_justification(AdviserTestCase.JUSTIFICATION_SAMPLE_1)
    return state
示例#11
0
    def test_add_state_order_single(self) -> None:
        """Test adding states to beam and order during addition when score is same - iteration is relevant."""
        beam = Beam(width=1)

        state01 = State(
            score=0.0,
            iteration=1,
        )
        state01.add_justification(self.JUSTIFICATION_SAMPLE_1)
        beam.add_state(state01)

        state02 = State(
            score=0.0,
            iteration=0,
        )
        state02.add_justification(self.JUSTIFICATION_SAMPLE_2)
        beam.add_state(state02)

        assert list(beam.iter_states()) == [state01]
        assert list(beam.iter_states_sorted(reverse=True)) == [state01]
        assert list(beam.iter_states_sorted(reverse=False)) == [state01]
示例#12
0
    def run(self, state: State) -> None:
        """Run main entry-point for wrap units to filter and score packages."""
        if not self._run_state(state):
            return None

        prescription_conf = self._configuration["prescription"]

        if not prescription_conf["run"]:
            justification = self.run_prescription.get("justification")
            if justification:
                state.add_justification(justification)

            advised_manifest_changes = self.run_prescription.get(
                "advised_manifest_changes")
            if advised_manifest_changes:
                state.advised_manifest_changes.append(advised_manifest_changes)

        try:
            self._run_base()
        finally:
            prescription_conf["run"] = True
示例#13
0
    def test_add_state_order_multi(self) -> None:
        """Test adding states to beam and order during addition when score is same."""
        beam = Beam(width=2)

        state01 = State(score=0.0, iteration=0, iteration_states_added=0)
        state01.add_justification([{"state": "01"}])
        beam.add_state(state01)

        state02 = State(score=0.0, iteration=0, iteration_states_added=1)
        state02.add_justification([{"state": "02"}])
        beam.add_state(state02)

        state03 = State(score=0.0, iteration=1, iteration_states_added=0)
        state03.add_justification([{"state": "03"}])
        beam.add_state(state03)

        state04 = State(score=0.0, iteration=1, iteration_states_added=1)
        state04.add_justification([{"state": "04"}])
        beam.add_state(state04)

        assert list(beam.iter_states_sorted()) == [state03, state04]
        assert list(beam.iter_states_sorted(reverse=True)) == [state03, state04]
        assert list(beam.iter_states_sorted(reverse=False)) == [state04, state03]
示例#14
0
    def test_add_state_order_multi(self) -> None:
        """Test adding states to beam and order during addition when score is same."""
        beam = Beam(width=2)

        state01 = State(score=0.0)
        state01.add_justification(self.JUSTIFICATION_SAMPLE_1)
        beam.add_state(state01)

        state02 = State(score=0.0)
        state02.add_justification(self.JUSTIFICATION_SAMPLE_2)
        beam.add_state(state02)

        state03 = State(score=0.0)
        state03.add_justification(self.JUSTIFICATION_SAMPLE_3)
        beam.add_state(state03)

        assert list(beam.iter_states_sorted()) == [state01, state02]
        assert list(beam.iter_states_sorted(reverse=True)) == [state01, state02]
        assert list(beam.iter_states_sorted(reverse=False)) == [state01, state02]
示例#15
0
 def test_justification(self, final_state: State) -> None:
     """Test manipulation with state justification."""
     assert final_state.justification == self.JUSTIFICATION_SAMPLE_1
     final_state.add_justification(self.JUSTIFICATION_SAMPLE_2)
     assert final_state.justification == list(
         chain(self.JUSTIFICATION_SAMPLE_1, self.JUSTIFICATION_SAMPLE_2))
示例#16
0
    def test_from_final_state(self, context: Context) -> None:
        """Test instantiating product from a final state."""
        state = State(
            score=0.5,
            resolved_dependencies=OrderedDict(
                {
                    "daiquiri": ("daiquiri", "1.6.0", "https://pypi.org/simple"),
                    "numpy": ("numpy", "1.17.4", "https://pypi.org/simple"),
                    "tensorflow": ("tensorflow", "2.0.0", "https://pypi.org/simple"),
                }
            ),
            unresolved_dependencies=OrderedDict(),
            advised_runtime_environment=RuntimeEnvironment.from_dict(
                {"python_version": "3.6"}
            ),
        )
        state.add_justification([{"foo": "bar"}])

        pypi = Source("https://pypi.org/simple")

        pv_daiquiri_locked = PackageVersion(
            name="daiquiri", version="==1.6.0", index=pypi, develop=False
        )
        pv_numpy_locked = PackageVersion(
            name="numpy", version="==1.17.4", index=pypi, develop=False
        )
        pv_tensorflow_locked = PackageVersion(
            name="tensorflow", version="==2.0.0", index=pypi, develop=False
        )

        context.should_receive("get_package_version").with_args(
            ("daiquiri", "1.6.0", "https://pypi.org/simple"), graceful=False
        ).and_return(pv_daiquiri_locked).ordered()
        context.graph.should_receive("get_python_package_hashes_sha256").with_args(
            "daiquiri", "1.6.0", "https://pypi.org/simple"
        ).and_return(["000"]).ordered()

        context.should_receive("get_package_version").with_args(
            ("numpy", "1.17.4", "https://pypi.org/simple"), graceful=False
        ).and_return(pv_numpy_locked).ordered()
        context.graph.should_receive("get_python_package_hashes_sha256").with_args(
            "numpy", "1.17.4", "https://pypi.org/simple"
        ).and_return(["111"]).ordered()

        context.should_receive("get_package_version").with_args(
            ("tensorflow", "2.0.0", "https://pypi.org/simple"), graceful=False
        ).and_return(pv_tensorflow_locked).ordered()
        context.graph.should_receive("get_python_package_hashes_sha256").with_args(
            "tensorflow", "2.0.0", "https://pypi.org/simple"
        ).and_return(["222"]).ordered()

        pv_daiquiri = PackageVersion(
            name="daiquiri", version="*", index=pypi, develop=False
        )
        pv_tensorflow = PackageVersion(
            name="tensorflow", version=">=2.0.0", index=pypi, develop=False
        )

        project = flexmock()
        project.should_receive("iter_dependencies").with_args(
            with_devel=True
        ).and_return([pv_daiquiri, pv_tensorflow]).once()

        context.project = project
        context.dependencies = {
            "daiquiri": {
                ("daiquiri", "1.6.0", "https://pypi.org/simple"): set(),
            },
            "numpy": {
                ("numpy", "1.17.4", "https://pypi.org/simple"): set()
            },
            "tensorflow": {
                ("tensorflow", "2.0.0", "https://pypi.org/simple"): {
                    ("numpy", "1.17.4", "https://pypi.org/simple")
                }
            },
        }
        context.dependents = {
            "daiquiri": {
                ("daiquiri", "1.6.0", "https://pypi.org/simple"): set(),
            },
            "numpy": {
                ("numpy", "1.17.4", "https://pypi.org/simple"): {
                    (("tensorflow", "2.0.0", "https://pypi.org/simple"), "fedora", "31", "3.7")
                }
            },
            "tensorflow": {
                ("tensorflow", "2.0.0", "https://pypi.org/simple"): set()
            },
        }
        context.graph.should_receive("get_python_environment_marker").with_args(
            "tensorflow",
            "2.0.0",
            "https://pypi.org/simple",
            dependency_name="numpy",
            dependency_version="1.17.4",
            os_name="fedora",
            os_version="31",
            python_version="3.7",
        ).and_return("python_version >= '3.7'").once()
        product = Product.from_final_state(state=state, context=context)

        assert product.score == state.score
        assert product.justification == state.justification
        assert product.advised_runtime_environment == state.advised_runtime_environment
        assert product.project.to_dict() == {
            "requirements": {
                "packages": {
                    "daiquiri": {"index": "pypi-org", "version": "*"},
                    "tensorflow": {"index": "pypi-org", "version": ">=2.0.0"},
                },
                "dev-packages": {},
                "source": [
                    {
                        "url": "https://pypi.org/simple",
                        "verify_ssl": True,
                        "name": "pypi-org",
                    }
                ],
            },
            "requirements_locked": {
                "_meta": {
                    "sources": [
                        {
                            "url": "https://pypi.org/simple",
                            "verify_ssl": True,
                            "name": "pypi-org",
                        }
                    ],
                    "requires": {},
                    "hash": {
                        "sha256": "c3a2f42932b6e5cd30f5664b11eda605f5fbd672f1b88729561d0d3edd10b5d9"
                    },
                    "pipfile-spec": 6,
                },
                "default": {
                    "daiquiri": {
                        "version": "==1.6.0",
                        "hashes": ["sha256:000"],
                        "index": "pypi-org",
                    },
                    "numpy": {
                        "version": "==1.17.4",
                        "hashes": ["sha256:111"],
                        "index": "pypi-org",
                        "markers": "python_version >= '3.7'",
                    },
                    "tensorflow": {
                        "version": "==2.0.0",
                        "hashes": ["sha256:222"],
                        "index": "pypi-org",
                    },
                },
                "develop": {},
            },
            "runtime_environment": {
                "hardware": {"cpu_family": None, "cpu_model": None},
                "operating_system": {"name": None, "version": None},
                "python_version": None,
                "cuda_version": None,
                "name": None,
            },
        }
示例#17
0
    def test_from_final_state(self, context: Context) -> None:
        """Test instantiating product from a final state."""
        state = State(
            score=0.5,
            resolved_dependencies={
                "daiquiri": ("daiquiri", "1.6.0", "https://pypi.org/simple"),
                "numpy": ("numpy", "1.17.4", "https://pypi.org/simple"),
                "tensorflow": ("tensorflow", "2.0.0", "https://pypi.org/simple"),
            },
            unresolved_dependencies={},
            advised_runtime_environment=RuntimeEnvironment.from_dict({"python_version": "3.6"}),
        )
        state.add_justification(self.JUSTIFICATION_SAMPLE_1)

        pypi = Source("https://pypi.org/simple")

        pv_daiquiri_locked = PackageVersion(name="daiquiri", version="==1.6.0", index=pypi, develop=False)
        pv_numpy_locked = PackageVersion(name="numpy", version="==1.17.4", index=pypi, develop=False)
        pv_tensorflow_locked = PackageVersion(name="tensorflow", version="==2.0.0", index=pypi, develop=False)

        context.should_receive("get_package_version").with_args(
            ("daiquiri", "1.6.0", "https://pypi.org/simple"), graceful=False
        ).and_return(pv_daiquiri_locked).ordered()
        context.graph.should_receive("get_python_package_hashes_sha256").with_args(
            "daiquiri", "1.6.0", "https://pypi.org/simple"
        ).and_return(["000"]).ordered()

        context.should_receive("get_package_version").with_args(
            ("numpy", "1.17.4", "https://pypi.org/simple"), graceful=False
        ).and_return(pv_numpy_locked).ordered()
        context.graph.should_receive("get_python_package_hashes_sha256").with_args(
            "numpy", "1.17.4", "https://pypi.org/simple"
        ).and_return(["111"]).ordered()

        context.should_receive("get_package_version").with_args(
            ("tensorflow", "2.0.0", "https://pypi.org/simple"), graceful=False
        ).and_return(pv_tensorflow_locked).ordered()
        context.graph.should_receive("get_python_package_hashes_sha256").with_args(
            "tensorflow", "2.0.0", "https://pypi.org/simple"
        ).and_return(["222"]).ordered()

        pv_daiquiri = PackageVersion(name="daiquiri", version="*", index=pypi, develop=False)
        pv_tensorflow = PackageVersion(name="tensorflow", version=">=2.0.0", index=pypi, develop=False)

        project = flexmock(
            pipfile=Pipfile.from_string(self._PIPFILE),
            runtime_environment=RuntimeEnvironment.from_dict({"operating_system": {"name": "rhel"}}),
        )
        project.should_receive("iter_dependencies").with_args(with_devel=True).and_return(
            [pv_daiquiri, pv_tensorflow]
        ).once()

        context.project = project
        context.dependencies = {
            "daiquiri": {
                ("daiquiri", "1.6.0", "https://pypi.org/simple"): set(),
            },
            "numpy": {("numpy", "1.17.4", "https://pypi.org/simple"): set()},
            "tensorflow": {
                ("tensorflow", "2.0.0", "https://pypi.org/simple"): {("numpy", "1.17.4", "https://pypi.org/simple")}
            },
        }
        context.dependents = {
            "daiquiri": {
                ("daiquiri", "1.6.0", "https://pypi.org/simple"): set(),
            },
            "numpy": {
                ("numpy", "1.17.4", "https://pypi.org/simple"): {
                    (
                        ("tensorflow", "2.0.0", "https://pypi.org/simple"),
                        "fedora",
                        "31",
                        "3.7",
                    )
                }
            },
            "tensorflow": {("tensorflow", "2.0.0", "https://pypi.org/simple"): set()},
        }
        context.graph.should_receive("get_python_environment_marker").with_args(
            "tensorflow",
            "2.0.0",
            "https://pypi.org/simple",
            dependency_name="numpy",
            dependency_version="1.17.4",
            os_name="fedora",
            os_version="31",
            python_version="3.7",
            marker_evaluation_result=True,
        ).and_return("python_version >= '3.7'").once()

        assert "THOTH_ADVISER_METADATA" not in os.environ
        metadata_justification = {"thoth.adviser": {"justification": [{"bar": "baz"}]}}
        os.environ["THOTH_ADVISER_METADATA"] = json.dumps(metadata_justification)
        try:
            product = Product.from_final_state(state=state, context=context)
        finally:
            os.environ.pop("THOTH_ADVISER_METADATA")

        assert product.score == state.score
        assert product.justification == list(
            chain(metadata_justification["thoth.adviser"]["justification"], state.justification)
        )
        assert product.advised_runtime_environment == state.advised_runtime_environment
        assert product.project.to_dict() == {
            "constraints": [],
            "requirements": {
                "packages": {
                    "daiquiri": {"index": "pypi-org-simple", "version": "*"},
                    "tensorflow": {"index": "pypi-org-simple", "version": ">=2.0.0"},
                },
                "dev-packages": {},
                "requires": {"python_version": "3.7"},
                "source": [
                    {
                        "url": "https://pypi.org/simple",
                        "verify_ssl": True,
                        "name": "pypi-org",
                    },
                    {
                        "url": "https://pypi.org/simple",
                        "verify_ssl": True,
                        "name": "pypi-org-simple",
                    },
                ],
                "thoth": {
                    "allow_prereleases": {"black": True},
                },
            },
            "requirements_locked": {
                "_meta": {
                    "sources": [
                        {"name": "pypi-org", "url": "https://pypi.org/simple", "verify_ssl": True},
                        {
                            "url": "https://pypi.org/simple",
                            "verify_ssl": True,
                            "name": "pypi-org-simple",
                        },
                    ],
                    "requires": {"python_version": "3.7"},
                    "hash": {"sha256": "6cc8365e799b949fb6cc564cea2d8e0e8a782ab676a006e65abbe14621b93381"},
                    "pipfile-spec": 6,
                },
                "default": {
                    "daiquiri": {
                        "version": "==1.6.0",
                        "hashes": ["sha256:000"],
                        "index": "pypi-org-simple",
                    },
                    "numpy": {
                        "version": "==1.17.4",
                        "hashes": ["sha256:111"],
                        "index": "pypi-org-simple",
                        "markers": "python_version >= '3.7'",
                    },
                    "tensorflow": {
                        "version": "==2.0.0",
                        "hashes": ["sha256:222"],
                        "index": "pypi-org-simple",
                    },
                },
                "develop": {},
            },
            "runtime_environment": {
                "hardware": {"cpu_family": None, "cpu_model": None, "gpu_model": None},
                "operating_system": {"name": "rhel", "version": None},
                "python_version": None,
                "cuda_version": None,
                "labels": None,
                "cudnn_version": None,
                "name": None,
                "platform": None,
                "base_image": None,
                "mkl_version": None,
                "openblas_version": None,
                "openmpi_version": None,
                "recommendation_type": None,
            },
        }
示例#18
0
    def test_from_final_state(self, context: Context) -> None:
        """Test instantiating product from a final state."""
        state = State(
            score=0.5,
            resolved_dependencies={
                "daiquiri": ("daiquiri", "1.6.0", "https://pypi.org/simple"),
                "numpy": ("numpy", "1.17.4", "https://pypi.org/simple"),
                "tensorflow":
                ("tensorflow", "2.0.0", "https://pypi.org/simple"),
            },
            unresolved_dependencies={},
            advised_runtime_environment=RuntimeEnvironment.from_dict(
                {"python_version": "3.6"}),
        )
        state.add_justification(self.JUSTIFICATION_SAMPLE_1)

        pypi = Source("https://pypi.org/simple")

        pv_daiquiri_locked = PackageVersion(name="daiquiri",
                                            version="==1.6.0",
                                            index=pypi,
                                            develop=False)
        pv_numpy_locked = PackageVersion(name="numpy",
                                         version="==1.17.4",
                                         index=pypi,
                                         develop=False)
        pv_tensorflow_locked = PackageVersion(name="tensorflow",
                                              version="==2.0.0",
                                              index=pypi,
                                              develop=False)

        context.should_receive("get_package_version").with_args(
            ("daiquiri", "1.6.0", "https://pypi.org/simple"),
            graceful=False).and_return(pv_daiquiri_locked).ordered()
        context.graph.should_receive(
            "get_python_package_hashes_sha256").with_args(
                "daiquiri", "1.6.0",
                "https://pypi.org/simple").and_return(["000"]).ordered()

        context.should_receive("get_package_version").with_args(
            ("numpy", "1.17.4", "https://pypi.org/simple"),
            graceful=False).and_return(pv_numpy_locked).ordered()
        context.graph.should_receive(
            "get_python_package_hashes_sha256").with_args(
                "numpy", "1.17.4",
                "https://pypi.org/simple").and_return(["111"]).ordered()

        context.should_receive("get_package_version").with_args(
            ("tensorflow", "2.0.0", "https://pypi.org/simple"),
            graceful=False).and_return(pv_tensorflow_locked).ordered()
        context.graph.should_receive(
            "get_python_package_hashes_sha256").with_args(
                "tensorflow", "2.0.0",
                "https://pypi.org/simple").and_return(["222"]).ordered()

        pv_daiquiri = PackageVersion(name="daiquiri",
                                     version="*",
                                     index=pypi,
                                     develop=False)
        pv_tensorflow = PackageVersion(name="tensorflow",
                                       version=">=2.0.0",
                                       index=pypi,
                                       develop=False)

        project = flexmock(
            pipfile=Pipfile.from_string(self._PIPFILE),
            runtime_environment=RuntimeEnvironment.from_dict(
                {"operating_system": {
                    "name": "rhel"
                }}),
        )
        project.should_receive("iter_dependencies").with_args(
            with_devel=True).and_return([pv_daiquiri, pv_tensorflow]).once()

        context.project = project
        context.dependencies = {
            "daiquiri": {
                ("daiquiri", "1.6.0", "https://pypi.org/simple"): set(),
            },
            "numpy": {
                ("numpy", "1.17.4", "https://pypi.org/simple"): set()
            },
            "tensorflow": {
                ("tensorflow", "2.0.0", "https://pypi.org/simple"):
                {("numpy", "1.17.4", "https://pypi.org/simple")}
            },
        }
        context.dependents = {
            "daiquiri": {
                ("daiquiri", "1.6.0", "https://pypi.org/simple"): set(),
            },
            "numpy": {
                ("numpy", "1.17.4", "https://pypi.org/simple"): {(
                    ("tensorflow", "2.0.0", "https://pypi.org/simple"),
                    "fedora",
                    "31",
                    "3.7",
                )}
            },
            "tensorflow": {
                ("tensorflow", "2.0.0", "https://pypi.org/simple"): set()
            },
        }
        context.graph.should_receive(
            "get_python_environment_marker").with_args(
                "tensorflow",
                "2.0.0",
                "https://pypi.org/simple",
                dependency_name="numpy",
                dependency_version="1.17.4",
                os_name="fedora",
                os_version="31",
                python_version="3.7",
            ).and_return("python_version >= '3.7'").once()
        product = Product.from_final_state(state=state, context=context)

        assert product.score == state.score
        assert product.justification == state.justification
        assert product.advised_runtime_environment == state.advised_runtime_environment
        assert product.project.to_dict() == {
            "requirements": {
                "packages": {
                    "daiquiri": {
                        "index": "pypi-org",
                        "version": "*"
                    },
                    "tensorflow": {
                        "index": "pypi-org",
                        "version": ">=2.0.0"
                    },
                },
                "dev-packages": {},
                "requires": {
                    "python_version": "3.7"
                },
                "source": [{
                    "url": "https://pypi.org/simple",
                    "verify_ssl": True,
                    "name": "pypi-org",
                }],
            },
            "requirements_locked": {
                "_meta": {
                    "sources": [{
                        "url": "https://pypi.org/simple",
                        "verify_ssl": True,
                        "name": "pypi-org",
                    }],
                    "requires": {
                        "python_version": "3.7"
                    },
                    "hash": {
                        "sha256":
                        "f08689732b596fd705a45bbf9ec44c3995b17a1aa6392c46500aeb736c4d4e88"
                    },
                    "pipfile-spec":
                    6,
                },
                "default": {
                    "daiquiri": {
                        "version": "==1.6.0",
                        "hashes": ["sha256:000"],
                        "index": "pypi-org",
                    },
                    "numpy": {
                        "version": "==1.17.4",
                        "hashes": ["sha256:111"],
                        "index": "pypi-org",
                        "markers": "python_version >= '3.7'",
                    },
                    "tensorflow": {
                        "version": "==2.0.0",
                        "hashes": ["sha256:222"],
                        "index": "pypi-org",
                    },
                },
                "develop": {},
            },
            "runtime_environment": {
                "hardware": {
                    "cpu_family": None,
                    "cpu_model": None
                },
                "operating_system": {
                    "name": "rhel",
                    "version": None
                },
                "python_version": None,
                "cuda_version": None,
                "name": None,
                "platform": None,
            },
        }